2000 AIME I Problems/Problem 7: Difference between revisions
mNo edit summary |
Orion 2010 (talk | contribs) |
||
| Line 72: | Line 72: | ||
== See also == | == See also == | ||
Erm, this is very similar to 2000 AMC 12 Q20 ackthually | |||
{{AIME box|year=2000|n=I|num-b=6|num-a=8}} | {{AIME box|year=2000|n=I|num-b=6|num-a=8}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 23:46, 8 November 2024
Problem
Suppose that
and
are three positive numbers that satisfy the equations
and
Then
where
and
are relatively prime positive integers. Find
.
Solution 1
We can rewrite
as
.
Substituting into one of the given equations, we have
We can substitute back into
to obtain
We can then substitute once again to get
Thus,
, so
.
Solution 2
Let
.
Thus
. So
.
Solution 3
Since
, so
. Also,
by the second equation. Substitution gives
,
, and
, so the answer is 4+1 which is equal to
.
Solution 4
(Hybrid between 1/2)
Because
and
. Substituting and factoring, we get
,
, and
. Multiplying them all together, we get,
, but
is
, and by the Identity property of multiplication, we can take it out. So, in the end, we get
. And, we can expand this to get
, and if we make a substitution for
, and rearrange the terms, we get
This will be important.
Now, lets add the 3 equations
, and
. We use the expand the Left hand sides, then, we add the equations to get
Notice that the LHS of this equation matches the LHS equation that I said was important. So, the RHS of both equations are equal, and thus
We move all constant terms to the right, and all linear terms to the left, to get
, so
which gives an answer of
-AlexLikeMath
Solution 5
Get rid of the denominators in the second and third equations to get
and
. Then, since
, we have
and
. Then, since we know that
, we can subtract these two equations to get that
. The result follows that
and
, so
, and the requested answer is
Solution 6
Rewrite the equations in terms of x.
becomes
.
becomes
Now express
in terms of x.
.
This evaluates to
, giving us
. We can now plug x into the other equations to get
and
.
Therefore,
.
, and we are done.
~MC413551
See also
Erm, this is very similar to 2000 AMC 12 Q20 ackthually
| 2000 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination