2022 AMC 12B Problems/Problem 16: Difference between revisions
Tecilis459 (talk | contribs) m Fix i tag |
Technodoggo (talk | contribs) m →Solution 2: ocd for \left(\right) |
||
| Line 25: | Line 25: | ||
Substitution into <math>(\log_2{x})^{\log_2{y}}=2^{7}</math> yields | Substitution into <math>(\log_2{x})^{\log_2{y}}=2^{7}</math> yields | ||
<math>(\dfrac{64}{y})^{\log_2{y}}=2^{7} \Rightarrow \log_2{y}\log_2{\dfrac{64}{y}}=7 \Rightarrow \log_2{y}(6-\log_2{y})=7 \Rightarrow \log^2_2{y}-6\log_2{y}+7=0</math>. | <math>\left(\dfrac{64}{y}\right)^{\log_2{y}}=2^{7} \Rightarrow \log_2{y}\log_2{\dfrac{64}{y}}=7 \Rightarrow \log_2{y}(6-\log_2{y})=7 \Rightarrow \log^2_2{y}-6\log_2{y}+7=0</math>. | ||
Solving for <math>\log_2{y}</math> yields <math>\log_2{y}=3-\sqrt{2}</math> or <math>3+\sqrt{2}</math>, and we take the greater value <math>\boxed{\boldsymbol{(\textbf{C})3+\sqrt{2}}}</math>. | Solving for <math>\log_2{y}</math> yields <math>\log_2{y}=3-\sqrt{2}</math> or <math>3+\sqrt{2}</math>, and we take the greater value <math>\boxed{\boldsymbol{(\textbf{C})3+\sqrt{2}}}</math>. | ||
Revision as of 23:10, 1 November 2024
Problem
Suppose
and
are positive real numbers such that
What is the greatest possible value of
?
Solution
Take the base-two logarithm of both equations to get
Now taking the base-two logarithm of the first equation again yields
It follows that the real numbers
and
satisfy
and
. Solving this system yields
Thus the largest possible value of
is
.
cr. djmathman
Solution 2
.
Substitution into
yields
.
Solving for
yields
or
, and we take the greater value
.
~4SunnyH
Solution 3
Let
We have
and
.
Then, from eq 1,
and substituting in to eq 2,
Thus,
Solving for
using the quadratic formula gets
Since we are looking for
which equals
we put
as our answer.
~sirswagger21
Video Solution by mop 2024
https://youtu.be/ezGvZgBLe8k&t=722s
~r00tsOfUnity
Video Solution (Just 2 min!)
Education, the Study of Everything
Video Solution(1-16)
~~Hayabusa1
See Also
| 2022 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 15 |
Followed by Problem 17 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing