1998 AHSME Problems/Problem 26: Difference between revisions
solutions, {{image}} needed |
→Solution 1: + <asy> image. |
||
| Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a <tt>30-60-90</tt> triangle. Also, <math>\triangle ABE \ | Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a <tt>30-60-90</tt> triangle. Also, <math>\triangle ABE \sim \triangle CDE</math>, so <math>\triangle CDE</math> is also a <tt>30-60-90</tt> triangle. | ||
{ | <center><asy> | ||
size(200); | |||
defaultpen(0.8); | |||
pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2); | |||
pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2; | |||
draw(D--A--B--C--cycle); | |||
draw(C--A); | |||
draw(A--E--B,dashed); | |||
label("\(A\)",A,SSW); | |||
label("\(B\)",B,NNE); | |||
label("\(C\)",C,WNW); | |||
label("\(D\)",D,SSW); | |||
label("\(E\)",E,SSE); | |||
label("24<math>\sqrt{3}</math>",P,W); | |||
label("46",Q,S); | |||
label("26",R,S); | |||
label("13",T,WNW); | |||
</asy></center> | |||
Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, < | |||
Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, <cmath>AC = \sqrt{(46)^2 + (24\sqrt{3})^2} = 62 \Rightarrow \mathrm{(B)}.</cmath> | |||
=== Solution 2 === | === Solution 2 === | ||
Revision as of 20:41, 9 February 2008
Problem
In quadrilateral
, it is given that
, angles
and
are right angles,
, and
. Then
Solution
Solution 1
Let the extensions of
and
be at
. Since
,
and
is a 30-60-90 triangle. Also,
, so
is also a 30-60-90 triangle.
size(200);
defaultpen(0.8);
pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2);
pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2;
draw(D--A--B--C--cycle);
draw(C--A);
draw(A--E--B,dashed);
label("\(A\)",A,SSW);
label("\(B\)",B,NNE);
label("\(C\)",C,WNW);
label("\(D\)",D,SSW);
label("\(E\)",E,SSE);
label("24<math>\sqrt{3}</math>",P,W);
label("46",Q,S);
label("26",R,S);
label("13",T,WNW);
(Error making remote request. Unknown error_msg)
Thus
, and
. By the Pythagorean Theorem on
,
Solution 2
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Opposite angles add up to
, so
is a cyclic quadrilateral. Also,
, from which it follows that
is a diameter of the circumscribing circle. We can apply the extended version of the Law of Sines on
:
By the Law of Cosines on
:
So
.
See also
| 1998 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 25 |
Followed by Problem 27 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||