1993 USAMO Problems/Problem 2: Difference between revisions
m →Work |
Solution i used for Otis application, found it was pretty trivial |
||
| Line 3: | Line 3: | ||
Let <math>ABCD</math> be a convex quadrilateral such that diagonals <math>AC</math> and <math>BD</math> intersect at right angles, and let <math>E</math> be their intersection. Prove that the reflections of <math>E</math> across <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DA</math> are concyclic. | Let <math>ABCD</math> be a convex quadrilateral such that diagonals <math>AC</math> and <math>BD</math> intersect at right angles, and let <math>E</math> be their intersection. Prove that the reflections of <math>E</math> across <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DA</math> are concyclic. | ||
== Solution == | == Solution 1 == | ||
===Diagram=== | ===Diagram=== | ||
<center><table border=1><tr><td><asy> | <center><table border=1><tr><td><asy> | ||
| Line 60: | Line 60: | ||
<P align="right"><math>\mathbb{Q.E.D}</math></P> | <P align="right"><math>\mathbb{Q.E.D}</math></P> | ||
== Solution 2 == | |||
Suppose the reflection of E over AB is W, and similarly define X, Y, and Z. \newline | |||
<math>\bigtriangleup BEA \cong \bigtriangleup BWA</math> by reflection gives <math>BE = BW</math> \newline | |||
<math>\bigtriangleup BEC \cong \bigtriangleup BXC</math> by reflection gives <math>BE = BX</math> \newline | |||
These two tell us that E, W, and X belong to a circle with center B. \newline | |||
Similarly, we can get that: \newline | |||
E, Z, and W belong to a circle with center A, \newline | |||
E, X, and Y belong to a circle with center C, \newline | |||
E, Y, and Z belong to a circle with center D. \newline | |||
\newline | |||
To prove that W, X, Y, Z are concyclic, we want to prove <math>\angle XWZ + \angle XYZ = 180^o</math> \newline | |||
<math>\angle XWZ + \angle XYZ = \angle XWE + \angle EWZ + \angle XYE + \angle EYZ</math> \newline | |||
<math> = \frac{1}{2} \angle XBE + \frac{1}{2} \angle EAZ + \frac{1}{2} \angle XCE + \frac{1}{2} \angle EDZ</math> \newline | |||
<math> = \frac{1}{2} (\angle XBE + \angle XCE) + \frac{1}{2} (\angle EAZ + \angle EDZ)</math> \newline | |||
\newline | |||
<math>\angle AED = 90^o</math> and <math>\angle AED = \angle AZD</math> tells us that <math>\angle EAZ + \angle EDZ = 180^o</math> \newline | |||
Similarly, <math>\angle XBE + \angle XCE = 180^o</math> \newline | |||
Thus, <math>\angle XWZ + \angle XYZ = \frac{1}{2} \cdot 180^o + \frac{1}{2} \cdot 180^o = 180^o</math>, and we are done. \newline | |||
-- Lucas.xue (someone pls help with a diagram) | |||
== See Also == | == See Also == | ||
Revision as of 19:25, 5 September 2024
Problem 2
Let
be a convex quadrilateral such that diagonals
and
intersect at right angles, and let
be their intersection. Prove that the reflections of
across
,
,
,
are concyclic.
Solution 1
Diagram
![]() |
Work
Let
,
,
,
be the foot of the altitude from point
of
,
,
,
.
Note that reflection of
over all the points of
is similar to
with a scale of
with center
. Thus, if
is cyclic, then the reflections are cyclic.
is right angle and so is
. Thus,
is cyclic with
being the diameter of the circumcircle.
Follow that,
because they inscribe the same angle.
Similarly
,
,
.
Futhermore, ![]()
.
Thus,
and
are supplementary and follows that,
is cyclic.
![]()
Solution 2
Suppose the reflection of E over AB is W, and similarly define X, Y, and Z. \newline
by reflection gives
\newline
by reflection gives
\newline
These two tell us that E, W, and X belong to a circle with center B. \newline
Similarly, we can get that: \newline
E, Z, and W belong to a circle with center A, \newline
E, X, and Y belong to a circle with center C, \newline
E, Y, and Z belong to a circle with center D. \newline
\newline
To prove that W, X, Y, Z are concyclic, we want to prove
\newline
\newline
\newline
\newline
\newline
and
tells us that
\newline
Similarly,
\newline
Thus,
, and we are done. \newline
-- Lucas.xue (someone pls help with a diagram)
See Also
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing
![[asy] import olympiad; defaultpen(0.8pt+fontsize(12pt)); pair E; E=(0,0); label('$E$',E,N); pair A,B,C,D; A=(10,0); B=(0,13); C=(-13,0); D=(0,-11); draw(A--B--C--D--cycle,blue); label('$A$',A,E); label('$B$',B,N); label('$C$',C,W); label('$D$',D,S); pair T,R,S,Q; T=reflect(A, B)*E; R=reflect(C, B)*E; S=reflect(C, D)*E; Q=reflect(A, D)*E; pair W,X,Y,Z; W=extension(A,D,E,Q); X=extension(A,B,E,T); Y=extension(C,B,E,R); Z=extension(C,D,E,S); draw(W--X--Y--Z--cycle,red); label('$X$',X,NE); label('$Y$',Y,NW); label('$Z$',Z, SW); label('$W$',W,SE); [/asy]](http://latex.artofproblemsolving.com/3/b/1/3b151545092b3a4ff38f44b608ec7540ae71e0a5.png)