2005 AMC 12B Problems/Problem 12: Difference between revisions
Dairyqueenxd (talk | contribs) |
|||
| Line 4: | Line 4: | ||
<math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math> | <math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math> | ||
aopas | |||
==Solutions== | ==Solutions== | ||
Revision as of 12:30, 24 August 2024
- The following problem is from both the 2005 AMC 12B #12 and 2005 AMC 10B #16, so both problems redirect to this page.
Problem
The quadratic equation
has roots twice those of
, and none of
and
is zero. What is the value of
?
aopas
Solutions
Solution 1
Let
have roots
and
. Then
so
and
. Also,
has roots
and
, so
and
and
. Thus
.
Indeed, consider the quadratics
.
Solution 2
If the roots of
are
and
and the roots of
are
and
, then using Vieta's formulas,
Therefore, substituting the second equation into the first equation gives
and substituting the fourth equation into the third equation gives
Therefore,
, so
Video Solution
https://youtu.be/3dfbWzOfJAI?t=1023
~ pi_is_3.14
See also
| 2005 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 15 |
Followed by Problem 17 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2005 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 11 |
Followed by Problem 13 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing