1989 USAMO Problems/Problem 1: Difference between revisions
add solution |
cleanup |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
For each positive integer <math>n</math>, let | For each positive [[integer]] <math>n</math>, let | ||
<div style="text-align:center;"> | <div style="text-align:center;"> | ||
<math>S_n = 1 + \frac 12 + \frac 13 + \cdots + \frac 1n</math> | <math>S_n = 1 + \frac 12 + \frac 13 + \cdots + \frac 1n</math> | ||
| Line 8: | Line 8: | ||
<math>U_n = \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}</math>. | <math>U_n = \frac{T_1}{2} + \frac{T_2}{3} + \frac{T_3}{4} + \cdots + \frac{T_n}{n+1}</math>. | ||
</div> | </div> | ||
Find, with proof, integers <math>0 < a,\ b,\ c,\ d < 1000000</math> such that <math> | Find, with proof, integers <math>0 < a,\ b,\ c,\ d < 1000000</math> such that <math>T_{1988} = a S_{1989} - b</math> and <math>U_{1988} = c S_{1989} - d</math>. | ||
== Solution == | == Solution == | ||
If we re-group the terms of <math>T_{n-1}</math>, | |||
<cmath>\begin{align*} | |||
T_{n-1} &= \left(1\right) + \left(1 + \frac 12\right) + \left(1 + \frac 12 + \frac 13\right) + \ldots + \left(1 + \frac 12 + \frac 13 + \ldots + \frac 1{n-1}\right) \\ | |||
&= \sum_{i=1}^{n-1} \left(\frac {n-i}i\right) = n\left(\sum_{i=1}^{n-1} \frac{1}{i}\right) - (n-1) = n\left(\sum_{i=1}^{n} \frac{1}{i}\right) - n \\ | |||
&= n \cdot S_{n} - n\end{align*}</cmath> | |||
Thus, for <math>n = 1989</math>, <math>T_{1988} = 1989 S_{1989} - 1989 \Longrightarrow \boxed{a = b = 1989}</math>. | |||
For the second part, applying this result gives | |||
<cmath>\begin{align*}U_{n-1} &= \sum_{i=2}^{n} \frac{T_{i-1}}{i} = \sum_{i=2}^{n}\ (S_{i} - 1) = T_{n-1} + S_n - (n-1) - S_1\\ | |||
&= \left(nS_n - n\right) + S_n - n = (n + 1)S_n - 2n\end{align*}</cmath> | |||
For | For <math>n = 1989</math>, we get that <math>\boxed{c = 1990, d = 2 \cdot 1989 = 3978}</math>. | ||
== See also == | == See also == | ||
Revision as of 20:58, 10 January 2008
Problem
For each positive integer
, let
.
Find, with proof, integers
such that
and
.
Solution
If we re-group the terms of
,
Thus, for
,
.
For the second part, applying this result gives
For
, we get that
.
See also
| 1989 USAMO (Problems • Resources) | ||
| Preceded by First question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||