1989 USAMO Problems/Problem 5: Difference between revisions
solution |
|||
| Line 2: | Line 2: | ||
Let <math>u</math> and <math>v</math> be real numbers such that | Let <math>u</math> and <math>v</math> be real numbers such that | ||
<cmath> (u + u^2 + u^3 + \cdots + u^8) + 10u^9 = (v + v^2 + v^3 + \cdots + v^{10}) + 10v^{11} = 8. </cmath> | |||
Determine, with proof, which of the two numbers, <math>u</math> or <math>v</math>, is larger. | |||
==Solution== | |||
The answer is <math>v</math>. | |||
We define real functions <math>U</math> and <math>V</math> as follows: | |||
<cmath>\begin{align*} | |||
U(x) &= (x+x^2 + \dotsb + x^8) + 10x^9 = \frac{x^{10}-x}{x-1} + 9x^9 \\ | |||
V(x) &= (x+x^2 + \dotsb + x^{10}) + 10x^{11} = \frac{x^{12}-x}{x-1} + 9x^{11} . | |||
\end{align*} </cmath> | |||
We wish to show that if <math>U(u)=V(v)=8</math>, then <math>u >v</math>. | |||
<math> | We first note that when <math>x \le 0</math>, <math>x^{12}-x \ge 0</math>, <math>x-1 < 0</math>, and <math>9x^9 \le 0</math>, so | ||
<cmath> U(x) = \frac{x^{10}-x}{x-1} + 9x^9 \le 0 < 8 .</cmath> | |||
</math> | Similarly, <math>V(x) \le 0 < 8</math>. | ||
We also note that if <math>x \ge 9/10 </math>, then | |||
<cmath> \begin{align*} | |||
U(x) &= \frac{x-x^{10}}{1-x} + 9x^9 \ge \frac{9/10 - 9^9/10^9}{1/10} + 9 \cdot \frac{9^{9}}{10^9} \\ | |||
&= 9 - 10 \cdot \frac{9^9}{10^9} + 9 \cdot \frac{9^9}{10^9} = 9 - \frac{9^9}{10^9} > 8. | |||
\end{align*} </cmath> | |||
Similarly <math>V(x) > 8</math>. It then follows that <math>u, v \in (0,9/10)</math>. | |||
== | Now, for all <math>x \in (0,9/10)</math>, | ||
<cmath> \begin{align*} | |||
V(x) &= U(x) + V(x)-U(x) = U(x) + 10x^{11}+x^{10} -9x^9 \\ | |||
&= U(x) + x^9 (10x -9) (x+1) < U(x) . | |||
\end{align*} </cmath> | |||
Since <math>V</math> and <math>U</math> are both strictly increasing functions over the nonnegative reals, it then follows that | |||
<cmath> V(u) < U(u) = 8 = V(v), </cmath> | |||
so <math>u<v</math>, as desired. <math>\blacksquare</math> | |||
== Resources == | |||
{{USAMO box|year=1989|num-b=4|after=Final Question}} | {{USAMO box|year=1989|num-b=4|after=Final Question}} | ||
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356639#356639 Discussion on AoPS/MathLinks] | |||
[[Category:Olympiad Algebra Problems]] | |||
Revision as of 18:37, 10 January 2008
Problem
Let
and
be real numbers such that
Determine, with proof, which of the two numbers,
or
, is larger.
Solution
The answer is
.
We define real functions
and
as follows:
We wish to show that if
, then
.
We first note that when
,
,
, and
, so
Similarly,
.
We also note that if
, then
Similarly
. It then follows that
.
Now, for all
,
Since
and
are both strictly increasing functions over the nonnegative reals, it then follows that
so
, as desired.
Resources
| 1989 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Final Question | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||