1999 IMO Problems/Problem 6: Difference between revisions
| Line 11: | Line 11: | ||
Substituting <math>x = y = 0 </math>, we get: | Substituting <math>x = y = 0 </math>, we get: | ||
<cmath>f(-c) = f(c) + c - 1. ... (1) </cmath> | <cmath>f(-c) = f(c) + c - 1. \hspace{1cm} ... (1) </cmath> | ||
Now if c = 0, then: | Now if c = 0, then: | ||
| Line 22: | Line 22: | ||
<cmath>c = f(x) + x^{2} + f(x) - 1 </cmath>. | <cmath>c = f(x) + x^{2} + f(x) - 1 </cmath>. | ||
Solving for f(x), we get <math>f(x) = \frac{c + 1}{2} - \frac{x^{2}}{2}. | Solving for f(x), we get <math>f(x) = \frac{c + 1}{2} - \frac{x^{2}}{2}. \hspace{1cm} ... (2) </math><math> | ||
This means </math>f(x) = f(-x) <math> because </math>x^{2} = (-x)^{2} <math>. | This means </math>f(x) = f(-x) <math> because </math>x^{2} = (-x)^{2} <math>. | ||
Specifically, </math>f(c) = f(-c). | Specifically, </math>f(c) = f(-c). \hspace{1cm} ... (3) <math></math> | ||
Using equations <math>(1) </math> and <math>(3) </math>, we get: | Using equations <math>(1) </math> and <math>(3) </math>, we get: | ||
Revision as of 06:48, 24 June 2024
Problem
Determine all functions
such that
for all real numbers
.
Solution
Let
.
Substituting
, we get:
Now if c = 0, then:
which is not possible.
.
Now substituting
, we get
.
Solving for f(x), we get ![]()
f(x) = f(-x)
x^{2} = (-x)^{2} $.
Specifically,$ (Error compiling LaTeX. Unknown error_msg)f(c) = f(-c). \hspace{1cm} ... (3) $$ (Error compiling LaTeX. Unknown error_msg)
Using equations
and
, we get:
which gives
.
So, using this in equation
, we get
$$ (Error compiling LaTeX. Unknown error_msg)\boxed{f(x) = 1 - \frac{x^{2}}{2}} $ as the only solution to this functional equation.
See Also
| 1999 IMO (Problems) • Resources | ||
| Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
| All IMO Problems and Solutions | ||