Art of Problem Solving

2000 AIME II Problems/Problem 7: Difference between revisions

Sirappel (talk | contribs)
Sirappel (talk | contribs)
Line 27: Line 27:


Note:
Note:
Notice that each numerator is increased each time by a factor of <math>\frac{17}{3}, frac{16}{4}, \frac{15}{5}, \frac{14}{6},</math> etc. If you were taking the test under normal time conditions, it shouldn't be too hard to bash out all of the numbers but it is priority to be careful.
Notice that each numerator is increased each time by a factor of <math>\frac{17}{3}, \frac{16}{4}, \frac{15}{5}, \frac{14}{6},</math> etc. If you were taking the test under normal time conditions, it shouldn't be too hard to bash out all of the numbers but it is priority to be careful.


~SirAppel
~SirAppel

Revision as of 11:09, 5 April 2024

Problem

Given that

$\frac 1{2!17!}+\frac 1{3!16!}+\frac 1{4!15!}+\frac 1{5!14!}+\frac 1{6!13!}+\frac 1{7!12!}+\frac 1{8!11!}+\frac 1{9!10!}=\frac N{1!18!}$

find the greatest integer that is less than $\frac N{100}$.

Solution

Multiplying both sides by $19!$ yields:

\[\frac {19!}{2!17!}+\frac {19!}{3!16!}+\frac {19!}{4!15!}+\frac {19!}{5!14!}+\frac {19!}{6!13!}+\frac {19!}{7!12!}+\frac {19!}{8!11!}+\frac {19!}{9!10!}=\frac {19!N}{1!18!}.\]

\[\binom{19}{2}+\binom{19}{3}+\binom{19}{4}+\binom{19}{5}+\binom{19}{6}+\binom{19}{7}+\binom{19}{8}+\binom{19}{9} = 19N.\]

Recall the Combinatorial Identity $2^{19} = \sum_{n=0}^{19} {19 \choose n}$. Since ${19 \choose n} = {19 \choose 19-n}$, it follows that $\sum_{n=0}^{9} {19 \choose n} = \frac{2^{19}}{2} = 2^{18}$.

Thus, $19N = 2^{18}-\binom{19}{1}-\binom{19}{0}=2^{18}-19-1 = (2^9)^2-20 = (512)^2-20 = 262124$.

So, $N=\frac{262124}{19}=13796$ and $\left\lfloor \frac{N}{100} \right\rfloor =\boxed{137}$.


Solution 2

Let $f(x) = (1+x)^{19}.$ Applying the binomial theorem gives us $f(x) = \binom{19}{19} x^{19} + \binom{19}{18} x^{18} + \binom{19}{17} x^{17}+ \cdots + \binom{19}{0}.$ Since $\frac 1{2!17!}+\frac 1{3!16!}+\dots+\frac 1{8!11!}+\frac 1{9!10!} = \frac{\frac{f(1)}{2} - \binom{19}{19} - \binom{19}{18}}{19!},$ $N = \frac{2^{18}-20}{19}.$ After some fairly easy bashing, we get $\boxed{137}$ as the answer.

~peelybonehead

Solution 3 (Brute Force)

Convert each denominator to $19!$ and get the numerators to be $9,51,204,612,1428,2652,3978,4862$ (refer to note). Adding these up we have $13796$ therefore $\boxed{137}$ is the desired answer.

Note: Notice that each numerator is increased each time by a factor of $\frac{17}{3}, \frac{16}{4}, \frac{15}{5}, \frac{14}{6},$ etc. If you were taking the test under normal time conditions, it shouldn't be too hard to bash out all of the numbers but it is priority to be careful.

~SirAppel

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing