Art of Problem Solving

2024 AIME I Problems/Problem 12: Difference between revisions

Mathkiddie (talk | contribs)
Created blank page
 
Eevee9406 (talk | contribs)
No edit summary
Line 1: Line 1:
==Problem==
Define <math>f(x)=|| x|-\tfrac{1}{2}|</math> and <math>g(x)=|| x|-\tfrac{1}{4}|</math>. Find the number of intersections of the graphs of <cmath>y=4 g(f(\sin (2 \pi x))) \quad\text{ and }\quad x=4 g(f(\cos (3 \pi y))).</cmath>


==Solution==
==See also==
{{AIME box|year=2024|n=I|num-b=11|num-a=13}}
{{MAA Notice}}

Revision as of 18:24, 2 February 2024

Problem

Define $f(x)=|| x|-\tfrac{1}{2}|$ and $g(x)=|| x|-\tfrac{1}{4}|$. Find the number of intersections of the graphs of \[y=4 g(f(\sin (2 \pi x))) \quad\text{ and }\quad x=4 g(f(\cos (3 \pi y))).\]

Solution

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing