Art of Problem Solving

2024 AIME I Problems/Problem 9: Difference between revisions

Mathkiddie (talk | contribs)
Created blank page
 
Hdanger (talk | contribs)
No edit summary
Line 1: Line 1:
==Problem==


Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> be point on the hyperbola <math>\frac{x^2}{20}- \frac{y^2}{24} = 1</math> such that <math>ABCD</math> is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than <math>BD^2</math> for all such rhombi.
==See also==
{{AIME box|year=2024|n=I|num-b=6|num-a=8}}
{{MAA Notice}}

Revision as of 14:02, 2 February 2024

Problem

Let $A$, $B$, $C$, and $D$ be point on the hyperbola $\frac{x^2}{20}- \frac{y^2}{24} = 1$ such that $ABCD$ is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than $BD^2$ for all such rhombi.

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing