Art of Problem Solving

2024 AMC 8 Problems/Problem 22: Difference between revisions

Iwowowl253 (talk | contribs)
Iwowowl253 (talk | contribs)
Line 15: Line 15:


==Solution 3==
==Solution 3==
We can figure out the length of the tape by considering the side as a really thin rectangle that has a width of 0.015 inches. The side of the tape is wrapped into a circle, meaning the area of the circle is equal to the area of the rectangle. The area of the circle is
We can figure out the length of the tape by considering the side as a really thin rectangle that has a width of 0.015 inches. The side of the tape is wrapped into a annulus(The shaded region between 2 circles with the same center), meaning the area of the circle is equal to the area of the rectangle. The area of the annulus is 4 squared pi - 2 squared pi = 12pi, and we divide that by 0.015


==Video Solution by Power Solve==
==Video Solution by Power Solve==

Revision as of 22:28, 26 January 2024

Problem 22

A roll of tape is $4$ inches in diameter and is wrapped around a ring that is $2$ inches in diameter. A cross section of the tape is shown in the figure below. The tape is $0.015$ inches thick. If the tape is completely unrolled, approximately how long would it be? Round your answer to the nearest $100$ inches.

(A) $300$ (B) $600$ (C) $1200$ (D) $1500$ (E) $1800$

Solution 1

The roll of tape is $1/0.015~66$ layers thick. In order to find the total length, we have to find the average of each concentric circle and multiply it by $66$. Since the diameter of the small circle is $2$ inches and the diameter of the large one is $4$ inches, the "middle value" is $3$. Therefore, the average circumference is $3\pi$. Multiplying $3\pi*66$ gives $(B) \boxed{600}$.

-ILoveMath31415926535

Solution 2

There are about $\dfrac{1}{0.015}=\dfrac{200}{3}$ "full circles" of tape, and with average circumference of $\dfrac{4+2}{2}\pi=3\pi.$ $\dfrac{200}{3}*3\pi=200\pi,$ which means the answer is $600.$

Solution 3

We can figure out the length of the tape by considering the side as a really thin rectangle that has a width of 0.015 inches. The side of the tape is wrapped into a annulus(The shaded region between 2 circles with the same center), meaning the area of the circle is equal to the area of the rectangle. The area of the annulus is 4 squared pi - 2 squared pi = 12pi, and we divide that by 0.015

Video Solution by Power Solve

https://www.youtube.com/watch?v=mGsl2YZWJVU

Video Solution 1 by Math-X (First understand the problem!!!)

https://youtu.be/cMgngeSmFCY?si=Ngh2w5-AAuP38GZk&t=34

~Math-X

Video Solution 2 by OmegaLearn.org

https://youtu.be/k1yAO0pZw-c

Video Solution (Arithmetic Series)3 by SpreadTheMathlove Using

https://www.youtube.com/watch?v=kv_id-MgtgY

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=bldjKBbhvkE

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing