2023 IMO Problems/Problem 2: Difference between revisions
No edit summary |
|||
| Line 67: | Line 67: | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==See Also== | |||
{{IMO box|year=2023|num-b=1|num-a=3}} | |||
Revision as of 00:57, 19 November 2023
Problem
Let
be an acute-angled triangle with
. Let
be the circumcircle of
. Let
be the midpoint of the arc
of
containing
. The perpendicular from
to
meets
at
and meets
again at
. The line through
parallel to
meets line
at
. Denote the circumcircle of triangle
by
. Let
meet
again at
. Prove that the line tangent to
at
meets line
on the internal angle bisector of
.
Video Solution
https://www.youtube.com/watch?v=JhThDz0H7cI [Video contains solutions to all day 1 problems]
https://youtu.be/I4FoXeVnSpM?si=BMxwsH4thsZ-7uLF [Video contains IMO 2023 P2 motivation + discussion] (~little-fermat)
Solution
Denote the point diametrically opposite to a point
through
is the internal angle bisector of
.
Denote the crosspoint of
and
through
To finishing the solution we need only to prove that
Denote
is incenter of
Denote
is the orthocenter of
Denote
and
are concyclic.
points
and
are collinear
is symmetric to
with respect
We use the lemma and complete the proof.
Lemma 1
Let acute triangle
be given.
Let
be the orthocenter of
be the height.
Let
be the circle
is the diameter of
The point
is symmetric to
with respect to
The line
meets
again at
.
Prove that
Proof
Let
be the circle centered at
with radius
The
meets
again at
Let
meets
again at
.
We use Reim’s theorem for
and lines
and
and get
(this idea was recommended by Leonid Shatunov).
The point
is symmetric to
with respect to
vladimir.shelomovskii@gmail.com, vvsss
See Also
| 2023 IMO (Problems) • Resources | ||
| Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
| All IMO Problems and Solutions | ||