2023 AMC 10B Problems/Problem 14: Difference between revisions
No edit summary |
mNo edit summary |
||
| Line 1: | Line 1: | ||
How many ordered pairs of integers <math>(m, n)</math> satisfy the equation <math>m^2+mn+n^2 = m^2n^2</math>? | How many ordered pairs of integers <math>(m, n)</math> satisfy the equation <math>m^2+mn+n^2 = m^2n^2</math>? | ||
== Solution == | == Solution 1 == | ||
Clearly, <math>m=0,n=0</math> is 1 solution. However there are definitely more, so we apply [https://artofproblemsolving.com/wiki/index.php/Simon%27s_Favorite_Factoring_Trick Simon's Favorite Factoring Expression] to get this: | |||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
| Line 16: | Line 16: | ||
<math>mn=-1</math> gives <math>(1,-1), (-1,1)</math>. | <math>mn=-1</math> gives <math>(1,-1), (-1,1)</math>. | ||
~Technodoggo | ~Technodoggo ~minor edits by lucaswujc | ||
==Solution== | ==Solution 2 == | ||
Case 1: <math>mn = 0</math>. | Case 1: <math>mn = 0</math>. | ||
Revision as of 18:15, 15 November 2023
How many ordered pairs of integers
satisfy the equation
?
Solution 1
Clearly,
is 1 solution. However there are definitely more, so we apply Simon's Favorite Factoring Expression to get this:
This basically say that the product of two consecutive numbers
must be a perfect square which is practically impossible except
or
.
gives
.
gives
.
~Technodoggo ~minor edits by lucaswujc
Solution 2
Case 1:
.
In this case,
.
Case 2:
.
Denote
.
Denote
and
.
Thus,
.
Thus, the equation given in this problem can be written as
Modulo
, we have
.
Because
, we must have
.
Plugging this into the above equation, we get
.
Thus, we must have
and
.
Thus, there are two solutions in this case:
and
.
Putting all cases together, the total number of solutions is \boxed{\textbf{(C) 3}}.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)