2023 AMC 10A Problems/Problem 17: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet? | A rhombic dodecahedron is a solid with <math>12</math> congruent rhombus faces. At every vertex, <math>3</math> or <math>4</math> edges meet, depending on the vertex. How many vertices have exactly <math>3</math> edges meet? | ||
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9</math> | |||
==Solution== | ==Solution== | ||
We see there are <math>\frac{12 \cdot 4}{2}</math> edges. We have by Euler's Polyhedral Formula, <math>V-E+F=2</math> meaning <math>V-24+12=2</math> or <math>V=14</math>. Let there be <math>a</math> vertices that have <math>3</math> edges meeting and <math>b</math> vertices that have <math>4</math> edges meeting. Hence, <cmath>a+b=14</cmath> | We see there are <math>\frac{12 \cdot 4}{2}</math> edges. We have by Euler's Polyhedral Formula, <math>V-E+F=2</math> meaning <math>V-24+12=2</math> or <math>V=14</math>. Let there be <math>a</math> vertices that have <math>3</math> edges meeting and <math>b</math> vertices that have <math>4</math> edges meeting. Hence, <cmath>a+b=14</cmath> | ||
Revision as of 19:58, 9 November 2023
A rhombic dodecahedron is a solid with
congruent rhombus faces. At every vertex,
or
edges meet, depending on the vertex. How many vertices have exactly
edges meet?
Solution
We see there are
edges. We have by Euler's Polyhedral Formula,
meaning
or
. Let there be
vertices that have
edges meeting and
vertices that have
edges meeting. Hence,
We find
and
, hence the answer is
.
~SirAppel