Art of Problem Solving

2023 AMC 12A Problems/Problem 10: Difference between revisions

Plasta (talk | contribs)
Plasta (talk | contribs)
Line 9: Line 9:


==See also==
==See also==
{{AMC12 box|year=2023|ab=A|num-a=10}}
{{AMC12 box|year=2023|ab=A|num-b=9|num-a=11}}


[[Category:Rate Problems]]
[[Category:Rate Problems]]
{{MAA Notice}}
{{MAA Notice}}

Revision as of 19:16, 9 November 2023

Problem

Positive real numbers $x$ and $y$ satisfy $y^3=x^2$ and $(y-x)^2=4y^2$. What is $x+y$? $\textbf{(A) }12\qquad\textbf{(B) }18\qquad\textbf{(C) }24\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution

Because $y^3=x^2$, set $x=a^3$, $y=a^2$ ($a\neq 0$). Put them in $(y-x)^2=4y^2$ we get $(a^2(a-1))^2=4a^4$ which implies $a^2-2a+1=4$. Solve the equation to get $a=3$ or $-1$. Since $x$ and $y$ are positive, $a=3$ and $x+y=3^3+3^2=\boxed{\textbf{(D)} 36}$.

~plasta

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing