1981 AHSME Problems/Problem 25: Difference between revisions
No edit summary |
fixed formtting again |
||
| Line 2: | Line 2: | ||
In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is | In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is | ||
<asy> | |||
defaultpen(linewidth(.8pt)); | |||
pair A = (0,11); | |||
pair B = (2,0); | |||
pair D = (4,0); | |||
pair E = (7,0); | |||
pair C = (13,0); | |||
label("$A$",A,N); | |||
label("$B$",B,SW); | |||
label("$C$",C,SE); | |||
label("$D$",D,S); | |||
label("$E$",E,S); | |||
label("$2$",midpoint(B--D),N); | |||
label("$3$",midpoint(D--E),NW); | |||
label("$6$",midpoint(E--C),NW); | |||
draw(A--B--C--cycle); | |||
draw(A--D); | |||
draw(A--E); | |||
</asy> | |||
<math>\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}</math> | <math>\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}</math> | ||
| Line 22: | Line 40: | ||
[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] ([[User talk:Aops-g5-gethsemanea2|talk]]) 01:47, 9 August 2023 (EDT) | [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] ([[User talk:Aops-g5-gethsemanea2|talk]]) 01:47, 9 August 2023 (EDT) | ||
{{AHSME box|year=1981| | {{AHSME box|year=1981|num-b=24|num-a=26}} | ||
Revision as of 00:56, 9 August 2023
Problem 25
In
in the adjoining figure,
and
trisect
. The lengths of
,
and
are
,
, and
, respectively. The length of the shortest side of
is
Solution
Let
,
,
, and
. Then, by the Angle Bisector Theorem,
and
, thus
and
.
Also, by Stewart’s Theorem,
and
. Therefore, we have the following system of equations using our substitution from earlier:
.
Thus, we have:
.
Therefore,
, so
, thus our first equation from earlier gives
, so
, thus
. So,
and the answer to the original problem is
.
Aops-g5-gethsemanea2 (talk) 01:47, 9 August 2023 (EDT)
| 1981 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Problem 26 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||