Art of Problem Solving

2008 AMC 8 Problems/Problem 19: Difference between revisions

Supermathking (talk | contribs)
Sootommylee (talk | contribs)
No edit summary
Line 26: Line 26:


https://www.youtube.com/watch?v=ZVD_PZYjonQ  ~David
https://www.youtube.com/watch?v=ZVD_PZYjonQ  ~David
==Video Solution 2==
https://youtu.be/PeI8YSHCdlM  Soo, DRMS, NM


==See Also==
==See Also==
{{AMC8 box|year=2008|num-b=18|num-a=20}}
{{AMC8 box|year=2008|num-b=18|num-a=20}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 23:41, 1 July 2023

Problem

Eight points are spaced around at intervals of one unit around a $2 \times 2$ square, as shown. Two of the $8$ points are chosen at random. What is the probability that the two points are one unit apart? [asy] size((50)); dot((5,0)); dot((5,5)); dot((0,5)); dot((-5,5)); dot((-5,0)); dot((-5,-5)); dot((0,-5)); dot((5,-5)); [/asy] $\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7}$

Solution 1

The two points are one unit apart at $8$ places around the edge of the square. There are $8 \choose 2$$= 28$ ways to choose two points. The probability is

\[\frac{8}{28} = \boxed{\textbf{(B)}\ \frac27}\]

Solution 2

Arbitrarily pick a point in the grid. Clearly, we see two options for the other point to be placed, so the answer is $\boxed{\textbf{(B)}\ \frac27}$


Video Solution

https://www.youtube.com/watch?v=ZVD_PZYjonQ ~David

Video Solution 2

https://youtu.be/PeI8YSHCdlM Soo, DRMS, NM

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing