2003 AMC 10B Problems/Problem 20: Difference between revisions
| Line 98: | Line 98: | ||
==Solution 5== | ==Solution 5== | ||
Drop a perpendicular from <math>E</math> to <math>AB</math> and call the intersection point <math>X.</math> <math>\triangle EXA</math> and <math>\triangle DFA</math> are similar and so are <math>\triangle BCG</math> and <math>\triangle EXB.</math> This means that <math>\dfrac{AX}{BX}=\dfrac{1}{2}</math> so <math>AX=\dfrac{5}{3}.</math> <math>\dfrac{EX}{AX}=3,</math> which means that <math>EX=5.</math> Then, <math>[AEB]=\dfrac{5\cdot 5}{2}=\boxed{\dfrac{25}{2}}.</math> | Drop a perpendicular from <math>E</math> to <math>AB</math> and call the intersection point <math>X.</math> <math>\triangle EXA</math> and <math>\triangle DFA</math> are similar and so are <math>\triangle BCG</math> and <math>\triangle EXB.</math> This means that <math>\dfrac{AX}{BX}=\dfrac{1}{2}</math> so <math>AX=\dfrac{5}{3}.</math> <math>\dfrac{EX}{AX}=3,</math> which means that <math>EX=5.</math> Then, <math>[AEB]=\dfrac{5\cdot 5}{2}=\boxed{\textbf{(D)} \dfrac{25}{2}}.</math> | ||
==See Also== | ==See Also== | ||
Revision as of 16:06, 27 April 2023
- The following problem is from both the 2003 AMC 12B #14 and 2003 AMC 10B #20, so both problems redirect to this page.
Problem
In rectangle
and
. Points
and
are on
so that
and
. Lines
and
intersect at
. Find the area of
.
![[asy] unitsize(8mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=0; pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); pair F=(1,3), G=(3,3); pair E=(5/3,5); draw(A--B--C--D--cycle); draw(A--E); draw(B--E); pair[] ps={A,B,C,D,E,F,G}; dot(ps); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,SE); label("$G$",G,SW); label("$1$",midpoint(D--F),N); label("$2$",midpoint(G--C),N); label("$5$",midpoint(A--B),S); label("$3$",midpoint(A--D),W); [/asy]](http://latex.artofproblemsolving.com/8/b/4/8b4fceed0d7e03e19b1507f86778bc77a8b7f334.png)
Solution 1
because
The ratio of
to
is
since
and
from subtraction. If we let
be the height of
The height is
so the area of
is
.
Solution 2
We can look at this diagram as if it were a coordinate plane with point
being
. This means that the equation of the line
is
and the equation of the line
is
. From this we can set of the follow equation to find the
coordinate of point
:
We can plug this into one of our original equations to find that the
coordinate is
, meaning the area of
is
Solution 3
At points
and
, segment
is 5 units from segment
. At points
and
, the segments are 2 units from each other. This means that collectively, the two lines closed the distance between them by 3 units over a height of 3 units. Therefore, to close the next two units of distance, they will have to travel a height of 2 units.
Then calculate the area of trapezoid
and triangle
separately and add them. The area of the trapezoid is
and the area of the triangle is
.
Solution 4
Since
then
, where
and
are ponts on
and
respectivley which make the areas similar. This process can be done over and over again multiple times by the ratio of
, or something like this
![]()
we have to find the ratio of the areas when the sides have shrunk by length
Let
be the area of the shape whose length is
![]()
![]()
Now comparing the ratios of
to
we get
By applying an infinite summation
![]()
![]()
Solution 5
Drop a perpendicular from
to
and call the intersection point
and
are similar and so are
and
This means that
so
which means that
Then,
See Also
| 2003 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 13 |
Followed by Problem 15 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2003 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing