2018 USAMO Problems/Problem 5: Difference between revisions
m →Solution: ; points |
|||
| Line 37: | Line 37: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((-5.58,1.98),dotstyle); | dot((-5.58,1.98),dotstyle); | ||
label("$A$", (-5.52,2.113333333333337), | label("$A$", (-5.52,2.113333333333337), N * labelscalefactor); | ||
dot((-7.42,-1.22),dotstyle); | dot((-7.42,-1.22),dotstyle); | ||
label("$B$", (-7.36,-1.0866666666666638), | label("$B$", (-7.36,-1.0866666666666638), SW * labelscalefactor); | ||
dot((-4.06,-3.18),dotstyle); | dot((-4.06,-3.18),dotstyle); | ||
label("$C$", (-4,-3.046666666666664), NE * labelscalefactor); | label("$C$", (-4,-3.046666666666664), NE * labelscalefactor); | ||
Revision as of 19:30, 6 March 2023
Problem 5
In convex cyclic quadrilateral
we know that lines
and
intersect at
lines
and
intersect at
and lines
and
intersect at
Suppose that the circumcircle of
intersects line
at
and
, and the circumcircle of
intersects line
at
and
, where
and
are collinear in that order. Prove that if lines
and
intersect at
, then
Solution
so
are collinear. Furthermore, note that
is cyclic because:
Notice that since
is the intersection of
and
, it is the Miquel point of
.
Now define
as the intersection of
and
. From Pappus's theorem on
that
are collinear. It’s a well known property of Miquel points that
, so it follows that
, as desired.
~AopsUser101