2023 AIME I Problems/Problem 4: Difference between revisions
No edit summary |
|||
| Line 6: | Line 6: | ||
~chem1kall | ~chem1kall | ||
==Solution 2== | |||
The prime factorization of <math>13!</math> is <math>2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13</math>. | |||
To get <math>\frac{13!}{m}</math> a perfect square, we must have <math>m = 2^{2x} \cdot 3^{1 + 2y} \cdot 5^{2z} \cdot 7 \cdot 11 \cdot 13</math>, where <math>x \in \left\{ 0, 1, \cdots , 5 \right\}</math>, <math>y \in \left\{ 0, 1, 2 \right\}</math>, <math>z \in \left\{ 0, 1 \right\}</math>. | |||
Hence, the sum of all feasible <math>m</math> is | |||
<cmath> | |||
\begin{align*} | |||
\sum_{x=0}^5 \sum_{y=0}^2 \sum_{z=0}^1 2^{2x} \cdot 3^{1 + 2y} \cdot 5^{2z} \cdot 7 \cdot 11 \cdot 13 | |||
& = \left( \sum_{x=0}^5 2^{2x} \right) | |||
\left( \sum_{y=0}^2 3^{1 + 2y} \right) | |||
\left( \sum_{z=0}^1 5^{2z} \right) | |||
7 \cdot 11 \cdot 13 \\ | |||
& = \frac{4^6 - 1}{4-1} \cdot \frac{3 \cdot \left( 9^3 - 1 \right)}{9 - 1} | |||
\cdot \frac{25^2 - 1}{25 - 1} \cdot 7 \cdot 11 \cdot 13 \\ | |||
& = 2 \cdot 3^2 \cdot 5 \cdot 7^3 \cdot 11 \cdot 13^4 . | |||
\end{align*} | |||
</cmath> | |||
Therefore, the answer is | |||
<cmath> | |||
\begin{align*} | |||
1 + 2 + 1 + 3 + 1 + 4 | |||
& = \boxed{\textbf{(012) }} . | |||
\end{align*} | |||
</cmath> | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
Revision as of 13:35, 8 February 2023
Problem 4
Unofficial problem: The sum of all positive integers
such that
is a perfect square can be written as
, where
and
are positive integers. Find
Solution
We first rewrite 13! as a prime factorization, which is
For the fraction to be a square, it needs each prime to be an even power. This means
must contain
. Also,
can contain any even power of 2 up to 10, any odd power of 3 up to 5, and any even power of 5 up to 2. The sum of
is
, which simplifies to
.
~chem1kall
Solution 2
The prime factorization of
is
.
To get
a perfect square, we must have
, where
,
,
.
Hence, the sum of all feasible
is
Therefore, the answer is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)