2023 AIME I Problems/Problem 10: Difference between revisions
R00tsofunity (talk | contribs) Created page with "==Problem 10== There exists a unique positive integer <math>a</math> for which the sum <cmath>U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor</cmath> is an int..." |
No edit summary |
||
| Line 3: | Line 3: | ||
(Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) | (Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) | ||
==Bounds and Decimal Part Analysis== | |||
Define <math>\left\{ x \right\} = x - \left\lfloor x \right\rfloor</math>. | |||
First, we bound <math>U</math>. | |||
We establish an upper bound of <math>U</math>. We have | |||
<cmath> | |||
\begin{align*} | |||
U & \leq \sum_{n=1}^{2023} \frac{n^2 - na}{5} \\ | |||
& = \frac{1}{5} \sum_{n=1}^{2023} n^2 - \frac{a}{5} \sum_{n=1}^{2023} n \\ | |||
& = \frac{1012 \cdot 2023}{5} \left( 1349 - a \right) \\ | |||
& \triangleq UB . | |||
\end{align*} | |||
</cmath> | |||
We establish a lower bound of <math>U</math>. We have | |||
<cmath> | |||
\begin{align*} | |||
U & = \sum_{n=1}^{2023} \left( \frac{n^2 - na}{5} - \left\{ \frac{n^2 - na}{5} \right\} \right) \\ | |||
& = \sum_{n=1}^{2023} \frac{n^2 - na}{5} | |||
- \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | |||
& = UB - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | |||
& \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ \frac{n^2 - na}{5} \notin \Bbb Z \right\} . | |||
\end{align*} | |||
</cmath> | |||
We notice that if <math>5 | n</math>, then <math>\frac{n^2 - na}{5} \in \Bbb Z</math>. | |||
Thus, | |||
<cmath> | |||
\begin{align*} | |||
U & \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ \frac{n^2 - na}{5} \notin \Bbb Z \right\} \\ | |||
& \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ 5 \nmid n \right\} \\ | |||
& = UB - \left( 2023 - \left\lfloor \frac{2023}{5} \right\rfloor \right) \\ | |||
& = UB - 1619 \\ | |||
& \triangleq LB . | |||
\end{align*} | |||
</cmath> | |||
Because <math>U \in \left[ - 1000, 1000 \right]</math> and <math>UB - LB = 1619 < \left( 1000 - \left( - 1000 \right) \right)</math>, we must have either <math>UB \in \left[ - 1000, 1000 \right]</math> or <math>LB \in \left[ - 1000, 1000 \right]</math>. | |||
For <math>UB \in \left[ - 1000, 1000 \right]</math>, we get a unique <math>a = 1349</math>. | |||
For <math>LB \in \left[ - 1000, 1000 \right]</math>, there is no feasible <math>a</math>. | |||
Therefore, <math>a = 1349</math>. Thus <math>UB = 0</math>. | |||
Next, we compute <math>U</math>. | |||
Let <math>n = 5 q + r</math>, where <math>r = {\rm Rem} \ \left( n, 5 \right)</math>. | |||
We have | |||
<cmath> | |||
\begin{align*} | |||
\left\{ \frac{n^2 - na}{5} \right\} | |||
& = \left\{ \frac{\left( 5 q + r \right)^2 - \left( 5 q + r \right)\left( 1350 - 1 \right)}{5} \right\} \\ | |||
& = \left\{ 5 q^2 + 2 q r - \left( 5 q + r \right) 270 + q + \frac{r^2 + r}{5} \right\} \\ | |||
& = \left\{\frac{r^2 + r}{5} \right\} \\ | |||
& = \left\{ | |||
\begin{array}{ll} | |||
0 & \mbox{ if } r = 0, 4 \\ | |||
\frac{2}{5} & \mbox{ if } r = 1, 3 \\ | |||
\frac{1}{5} & \mbox{ if } r = 2 | |||
\end{array} | |||
\right. . | |||
\end{align*} | |||
</cmath> | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
U & = \sum_{n=1}^{2023} \left( \frac{n^2 - na}{5} - \left\{ \frac{n^2 - na}{5} \right\} \right) \\ | |||
& = UB | |||
- \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | |||
& = - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | |||
& = - \sum_{q=0}^{404} \sum_{r=0}^4 \left\{\frac{r^2 + r}{5} \right\} | |||
+ \left\{ \frac{0^2 - 0 \cdot a}{5} \right\} | |||
+ \left\{ \frac{2024^2 - 2024a}{5} \right\} \\ | |||
& = - \sum_{q=0}^{404} \left( 0 + 0 + \frac{2}{5} + \frac{2}{5} + \frac{1}{5} \right) | |||
+ 0 + 0 \\ | |||
& = - 405 . | |||
\end{align*} | |||
</cmath> | |||
Therefor, <math>a + U = 1349 - 405 = \boxed{\textbf{(944) }}</math>. | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
==Video Solution by Punxsutawney Phil== | ==Video Solution by Punxsutawney Phil== | ||
https://youtu.be/jQVbNJr0tX8 | https://youtu.be/jQVbNJr0tX8 | ||
==Video Solution== | |||
https://youtu.be/fxsPmL6wuW4 | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
==See also== | ==See also== | ||
Revision as of 12:36, 8 February 2023
Problem 10
There exists a unique positive integer
for which the sum
is an integer strictly between
and
. For that value
, find
.
(Note that
denotes the greatest integer that is less than or equal to
.)
Bounds and Decimal Part Analysis
Define
.
First, we bound
.
We establish an upper bound of
. We have
We establish a lower bound of
. We have
We notice that if
, then
.
Thus,
Because
and
, we must have either
or
.
For
, we get a unique
.
For
, there is no feasible
.
Therefore,
. Thus
.
Next, we compute
.
Let
, where
.
We have
Therefore,
Therefor,
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by Punxsutawney Phil
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
| 2023 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing