2022 AIME I Problems/Problem 11: Difference between revisions
mNo edit summary |
→Solution 1 (No trig): ; changed diagram |
||
| Line 42: | Line 42: | ||
<asy> | <asy> | ||
size(10cm); | size(10cm); | ||
pair A,B,C,D, | pair A,B,C,D,EE,F,P,Q,O; | ||
A=(0,0); | A=(0,0); | ||
EE = (24,15); | |||
F = (30,0); | F = (30,0); | ||
O = (10.5,7.5); | O = (10.5,7.5); | ||
| Line 68: | Line 68: | ||
draw(C--(30,0),dashed); | draw(C--(30,0),dashed); | ||
draw(D--(30,0)); | draw(D--(30,0)); | ||
dot( | dot(EE); | ||
dot(F); | dot(F); | ||
| Line 81: | Line 81: | ||
label("$14+x$", (17.25,0), S); | label("$14+x$", (17.25,0), S); | ||
label("$6-x$", (27,15), N); | label("$6-x$", (27,15), N); | ||
label("$6+x$", (27,7.5), | label("$6+x$", (27,7.5), S); | ||
label("$6\sqrt{3}$", (30,7.5), | label("$6\sqrt{3}$", (30,7.5), E); | ||
label("$T_1$", (10.5,15), N); | label("$T_1$", (10.5,15), N); | ||
label("$T_2$", (10.5,0), S); | label("$T_2$", (10.5,0), S); | ||
label("$T_3$", (4.5,11.25),W); | label("$T_3$", (4.5,11.25), W); | ||
label("$E$", | label("$E$", EE, N); | ||
label("$F$",F, S); | label("$F$", F, S); | ||
</asy> | </asy> | ||
Revision as of 18:21, 2 January 2023
Problem
Let
be a parallelogram with
. A circle tangent to sides
,
, and
intersects diagonal
at points
and
with
, as shown. Suppose that
,
, and
. Then the area of
can be expressed in the form
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Video Solution by Punxsutawney Phil
https://www.youtube.com/watch?v=1m3pqCgwLFE
Solution 1 (No trig)
Let's redraw the diagram, but extend some helpful lines.
We obviously see that we must use power of a point since they've given us lengths in a circle and there are intersection points. Let
be our tangents from the circle to the parallelogram. By the secant power of a point, the power of
. Then
. Similarly, the power of
and
. We let
and label the diagram accordingly.
Notice that because
. Let
be the center of the circle. Since
and
intersect
and
, respectively, at right angles, we have
is a right-angled trapezoid and more importantly, the diameter of the circle is the height of the triangle. Therefore, we can drop an altitude from
to
and
to
, and both are equal to
. Since
,
. Since
and
. We can now use Pythagorean theorem on
; we have
and
.
We know that
because
is a parallelogram. Using Pythagorean theorem on
,
. Therefore, base
. Thus the area of the parallelogram is the base times the height, which is
and the answer is
~KingRavi
Solution 2
Let the circle tangent to
at
separately, denote that
Using POP, it is very clear that
, let
, using LOC in
,
, similarly, use LOC in
, getting that
. We use the second equation to minus the first equation, getting that
, we can get
.
Now applying LOC in
, getting
, solving this equation to get
, then
,
, the area is
leads to
~bluesoul
Solution 3
Denote by
the center of the circle. Denote by
the radius of the circle.
Denote by
,
,
the points that the circle meets
,
,
at, respectively.
Because the circle is tangent to
,
,
,
,
,
,
.
Because
,
,
,
are collinear.
Following from the power of a point,
. Hence,
.
Following from the power of a point,
. Hence,
.
Denote
. Because
and
are tangents to the circle,
.
Because
is a right trapezoid,
.
Hence,
.
This can be simplified as
In
, by applying the law of cosines, we have
Because
, we get
.
Plugging this into Equation (1), we get
.
Therefore,
Therefore, the answer is
.
~Steven Chen (www.professorchenedu.com)
Solution 4
Let
be the circle, let
be the radius of
, and let the points at which
is tangent to
,
, and
be
,
, and
, respectively. Note that PoP on
and
with respect to
yields
and
. We can compute the area of
in two ways:
1. By the half-base-height formula,
.
2. We can drop altitudes from the center
of
to
,
, and
, which have lengths
,
, and
. Thus,
.
Equating the two expressions for
and solving for
yields
.
Let
. By the Parallelogram Law,
. Solving for
yields
. Thus,
, for a final answer of
.
~ Leo.Euler
Solution 5
Let
be the circle, let
be the radius of
, and let the points at which
is tangent to
,
, and
be
,
, and
, respectively. PoP on
and
with respect to
yields
Let
In
Area is
vladimir.shelomovskii@gmail.com, vvsss
Video Solution
https://www.youtube.com/watch?v=FeM_xXiJj0c&t=1s
~Steven Chen (www.professorchenedu.com)
Video Solution 2 (Mathematical Dexterity)
https://www.youtube.com/watch?v=1nDKQkr9NaU
See Also
| 2022 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing