2022 AMC 10B Problems/Problem 5: Difference between revisions
MRENTHUSIASM (talk | contribs) Created page with "==Problem== What is the value of <cmath>\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right..." |
MRENTHUSIASM (talk | contribs) No edit summary |
||
| Line 6: | Line 6: | ||
We apply the difference of squares to the denominator, and then regroup factors: | We apply the difference of squares to the denominator, and then regroup factors: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}} &= \frac{1+\frac13}{\sqrt{1+\frac13 | \frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}} &= \frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}\cdot\sqrt{\left(1-\frac13\right)\left(1-\frac15\right)\left(1-\frac17\right)}} \\ | ||
&= \ | &= \frac{\sqrt{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}}{\sqrt{\left(1-\frac13\right)\left(1-\frac15\right)\left(1-\frac17\right)}} \\ | ||
&= \frac{\sqrt{\frac43\cdot\frac65\cdot\frac87}}{\sqrt{\frac23\cdot\frac45\cdot\frac67}} \\ | |||
&= \frac{\sqrt{4\cdot6\cdot8}}{\sqrt{2\cdot4\cdot6}} \\ | |||
&= \frac{\sqrt8}{\sqrt2} \\ | |||
&= \boxed{\textbf{(B)}\ 2}. | |||
\end{align*}</cmath> | \end{align*}</cmath> | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
Revision as of 14:46, 17 November 2022
Problem
What is the value of
Solution
We apply the difference of squares to the denominator, and then regroup factors:
~MRENTHUSIASM
See Also
| 2022 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing