2022 AMC 10B Problems/Problem 25: Difference between revisions
Created page with "==Problem== Let <math>x_0, x_1, x_2, \cdots</math> be a sequence of numbers, where each <math>x_k</math> is either 0 or 1. For each positive integer <math>n</math>, define <c..." |
|||
| Line 37: | Line 37: | ||
The equation above can be reformulated as: | The equation above can be reformulated as: | ||
<math></math> | |||
\begin{tabular}{ccccccccc} | \begin{tabular}{ccccccccc} | ||
& <math>\cdots</math> & 0 & <math>\cdots</math> & 0 & 0 & 0 & 0 & 0 \\ | & <math>\cdots</math> & 0 & <math>\cdots</math> & 0 & 0 & 0 & 0 & 0 \\ | ||
| Line 44: | Line 45: | ||
& <math>x_{n-1}</math> <math>x_{n-2}</math> <math>x_{n-3}</math> & <math>x_{n-4}</math> & <math>\cdots</math> & <math>x_1</math> & <math>x_0</math> & 0 & 0 & 0\\ | & <math>x_{n-1}</math> <math>x_{n-2}</math> <math>x_{n-3}</math> & <math>x_{n-4}</math> & <math>\cdots</math> & <math>x_1</math> & <math>x_0</math> & 0 & 0 & 0\\ | ||
\end{tabular} | \end{tabular} | ||
<math></math> | |||
Therefore, <math>x_0 = x_1 = x_2 = 1</math>, <math>x_3 = 0</math>, and for <math>k \geq 4</math>, <math>x_k = x_{k-3}</math>. | Therefore, <math>x_0 = x_1 = x_2 = 1</math>, <math>x_3 = 0</math>, and for <math>k \geq 4</math>, <math>x_k = x_{k-3}</math>. | ||
Revision as of 14:16, 17 November 2022
Problem
Let
be a sequence of numbers, where each
is either 0 or 1. For each positive
integer
, define
Suppose
for all
.
What is the value of the sum
Solution (Base-2 Analysis)
We solve this problem with base 2.
To avoid any confusion, for a base-2 number, we index the
th rightmost digit as digit
.
We have
.
In the base-2 representation,
is equivalent to
In the rest of the analysis, to lighten notation, we ease the base-2 subscription from all numbers. The equation above can be reformulated as:
$$ (Error compiling LaTeX. Unknown error_msg) \begin{tabular}{ccccccccc}
&& 0 &
& 0 & 0 & 0 & 0 & 0 \\ & & & & & & & & 1 \\
& &
&
&
&
&
&
&
\\ \hline %or \bottomrule if using the `booktabs` package &
![]()
![]()
&
&
&
&
& 0 & 0 & 0\\ \end{tabular}
$$ (Error compiling LaTeX. Unknown error_msg)
Therefore,
,
, and for
,
.
Therefore,
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)