Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2009 AMC 8 Problems/Problem 12: Difference between revisions

Supermathking (talk | contribs)
Supermathking (talk | contribs)
Line 35: Line 35:
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.


==Video Solution==
https://www.youtube.com/watch?v=NPTaWKEkaHs


==See Also==
==See Also==
{{AMC8 box|year=2009|num-b=11|num-a=13}}
{{AMC8 box|year=2009|num-b=11|num-a=13}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 20:16, 17 June 2022

Problem

The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?

[asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$1$",(0,.5)); label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy] [asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$2$",(0,.5)); label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]

$\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6}$


Solution

The possible sums are \[\begin{tabular}{c|ccc} & 1 & 3 & 5 \\ \hline 2 & 3 & 5 & 7 \\ 4 & 5 & 7 & 9 \\ 6 & 7 & 9 & 11 \end{tabular}\]

Only $9$ is not prime, so there are $7$ prime numbers and $9$ total numbers for a probability of $\boxed{\textbf{(D)}\ \frac79}$.

Video Solution

https://www.youtube.com/watch?v=NPTaWKEkaHs

See Also

2009 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination