Art of Problem Solving

Well Ordering Principle: Difference between revisions

Aops turtle (talk | contribs)
mNo edit summary
Arr0w (talk | contribs)
This article had a horrendous proof that was really informal. I added significant rigor and formalism to this topic.
Line 1: Line 1:
The '''Well Ordering Principle''' states that every nonempty set of positive integers contains a smallest member. The proof of this is simply common sense, but we can construct a formal proof by contradiction. Assume there is no smallest element. Then for each element in the set, there exists a smaller element, so if we take this smaller element, there must a different smaller element, and so on. Since the set is finite, we cannot continue like this infinitely many times, contradiction.
The '''Well Ordering Principle''' states that every nonempty subset of the positive integers <math>\mathbb{Z}^{+}</math> contains a smallest element. While this theorem is mostly brushed off as common sense, there is a bit of formalism required to actually prove the theorem sufficiently. We will do this here.  


{{stub}}
'''Definition''': A subset <math>A</math> of the real numbers is said to be inductive if it contains the number <math>1</math>, and if for every <math>x\in A</math>, the number <math>x+1\in A</math> as well.  Let <math>\mathcal{A}</math> be the collection of all the inductive subsets of <math>\mathbb{R}</math>.  Then the positive integers denoted <math>\mathbb{Z}^{+}</math> are defined by the equation
[[Category:Axioms]]
<center><math>\mathbb{Z}^{+}=\bigcap_{A\in \mathcal{A}}A</math></center>
 
Using this definition, we can rephrase the principle of mathematical induction as follows: if <math>A</math> is an inductive set of the positive integers, then <math>A=\mathbb{Z}^{+}</math>.  We can now proceed with the proof.
 
 
''Proof'': We first show that for any <math>n\in\mathbb{Z}^{+}</math>, every nonempty subset of <math>\{1,2,\ldots, n\}</math> has a smallest element.  Let <math>A</math> be the set of all positive integers <math>n</math> where this statement holds.  We see <math>A</math> contains <math>1</math>, since if <math>n=1</math> then the only subset of <math>\{1,2,\ldots, n\}</math> is <math>\{1\}</math> itself.  Then, supposing <math>A</math> contains <math>n</math> we show that it must contain <math>n+1</math>.  Let <math>C</math> be a nonempty subset of <math>\{1,2,\ldots, n+1\}</math>.  If <math>C=\{n+1\}</math> then <math>n+1</math> is its smallest element.  Otherwise, consider <math>C\cap \{1,2,\ldots,n\}</math>, which is nonempty.  Because <math>n\in A</math>, this set has a smallest element, which will be the smallest element of <math>C</math> also.  This means that <math>A</math> is inductive and <math>A=\mathbb{Z}^{+}</math>, so the statement is true for all <math>n\in\mathbb{Z}^{+}</math>. 
Now suppose <math>D\in \mathbb{Z}^{+}</math> is nonempty.  By choosing some <math>n\in D</math>, the set <math>A\cap\{1,2\ldots, n\}</math> is also nonempty which means that <math>A</math> has a smallest element <math>k</math>.  This means that <math>k</math> is the smallest element of <math>D</math> too, which completes the proof.

Revision as of 21:19, 12 May 2022

The Well Ordering Principle states that every nonempty subset of the positive integers $\mathbb{Z}^{+}$ contains a smallest element. While this theorem is mostly brushed off as common sense, there is a bit of formalism required to actually prove the theorem sufficiently. We will do this here.

Definition: A subset $A$ of the real numbers is said to be inductive if it contains the number $1$, and if for every $x\in A$, the number $x+1\in A$ as well. Let $\mathcal{A}$ be the collection of all the inductive subsets of $\mathbb{R}$. Then the positive integers denoted $\mathbb{Z}^{+}$ are defined by the equation

$\mathbb{Z}^{+}=\bigcap_{A\in \mathcal{A}}A$

Using this definition, we can rephrase the principle of mathematical induction as follows: if $A$ is an inductive set of the positive integers, then $A=\mathbb{Z}^{+}$. We can now proceed with the proof.


Proof: We first show that for any $n\in\mathbb{Z}^{+}$, every nonempty subset of $\{1,2,\ldots, n\}$ has a smallest element. Let $A$ be the set of all positive integers $n$ where this statement holds. We see $A$ contains $1$, since if $n=1$ then the only subset of $\{1,2,\ldots, n\}$ is $\{1\}$ itself. Then, supposing $A$ contains $n$ we show that it must contain $n+1$. Let $C$ be a nonempty subset of $\{1,2,\ldots, n+1\}$. If $C=\{n+1\}$ then $n+1$ is its smallest element. Otherwise, consider $C\cap \{1,2,\ldots,n\}$, which is nonempty. Because $n\in A$, this set has a smallest element, which will be the smallest element of $C$ also. This means that $A$ is inductive and $A=\mathbb{Z}^{+}$, so the statement is true for all $n\in\mathbb{Z}^{+}$. Now suppose $D\in \mathbb{Z}^{+}$ is nonempty. By choosing some $n\in D$, the set $A\cap\{1,2\ldots, n\}$ is also nonempty which means that $A$ has a smallest element $k$. This means that $k$ is the smallest element of $D$ too, which completes the proof.