Art of Problem Solving

2022 AMC 8 Problems/Problem 9: Difference between revisions

MRENTHUSIASM (talk | contribs)
Undo revision 170549 by Mathfun1000 (talk) I will try to combine the steps into one step.
Tag: Undo
MRENTHUSIASM (talk | contribs)
No edit summary
Line 15: Line 15:
After <math>15</math> minutes, the difference between the temperatures is <math>36\div2=18</math> degrees Fahrenheit. At this point, the water temperature is <math>68+18=\boxed{\textbf{(B) } 86}</math> degrees Fahrenheit.
After <math>15</math> minutes, the difference between the temperatures is <math>36\div2=18</math> degrees Fahrenheit. At this point, the water temperature is <math>68+18=\boxed{\textbf{(B) } 86}</math> degrees Fahrenheit.


~MRENTHUSIASM
<u><b>Remark</b></u>
 
Alternatively, we can condense the solution above into the following equation: <cmath>68+(212-68)\cdot\left(\frac12\right)^{15/5}=86.</cmath>
~MRENTHUSIASM ~Mathfun1000


==See Also==  
==See Also==  
{{AMC8 box|year=2022|num-b=8|num-a=10}}
{{AMC8 box|year=2022|num-b=8|num-a=10}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 21:25, 28 January 2022

Problem

A cup of boiling water ($212^{\circ}\text{F}$) is placed to cool in a room whose temperature remains constant at $68^{\circ}\text{F}$. Suppose the difference between the water temperature and the room temperature is halved every $5$ minutes. What is the water temperature, in degrees Fahrenheit, after $15$ minutes?

$\textbf{(A) } 77 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 98 \qquad \textbf{(E) } 104$

Solution

Initially, the difference between the water temperature and the room temperature is $212-68=144$ degrees Fahrenheit.

After $5$ minutes, the difference between the temperatures is $144\div2=72$ degrees Fahrenheit.

After $10$ minutes, the difference between the temperatures is $72\div2=36$ degrees Fahrenheit.

After $15$ minutes, the difference between the temperatures is $36\div2=18$ degrees Fahrenheit. At this point, the water temperature is $68+18=\boxed{\textbf{(B) } 86}$ degrees Fahrenheit.

Remark

Alternatively, we can condense the solution above into the following equation: \[68+(212-68)\cdot\left(\frac12\right)^{15/5}=86.\] ~MRENTHUSIASM ~Mathfun1000

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing