2021 WSMO Speed Round/Problem 1: Difference between revisions
| Line 6: | Line 6: | ||
<cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath> | <cmath>|f^7(2)|=f(f(f(f(f(f(f(2)))))))=f(f(f(f(f(f((2-1)^2))))))=f(f(f(f(f(f(1))))))</cmath> | ||
<cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath> | <cmath>=f(f(f(f(f((1-1)^2)))))=f(f(f(f(f(0)))))=f(f(f(f((0-1)^2))))=f(f(f(f(1))))=f(f(f((1-1)^2)))</cmath> | ||
<cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}</cmath> | <cmath>=f(f(f(0)))=f(f((0-1)^2))=f(f(1))=f((1-1)^2)=f(0)=(0-1)^2=\boxed{1}.</cmath> | ||
- pinkpig | |||
Revision as of 16:34, 22 December 2021
Problem
Let
, and let
. Find the value of
.
Solution (bash)
Note that
- pinkpig