2021 Fall AMC 12A Problems/Problem 10: Difference between revisions
| Line 20: | Line 20: | ||
==Solution 2 (9's Identity)== | ==Solution 2 (9's Identity)== | ||
We need to first convert N into a regular base-10 integer: | We need to first convert <math>N</math> into a regular base-10 integer: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
Revision as of 06:37, 26 November 2021
- The following problem is from both the 2021 Fall AMC 10A #12 and 2021 Fall AMC 12A #10, so both problems redirect to this page.
Problem
The base-nine representation of the number
is
What is the remainder when
is divided by
Solution 1
Recall that
We expand
by the definition of bases:
~Aidensharp ~kante314 ~MRENTHUSIASM
Solution 2 (9's Identity)
We need to first convert
into a regular base-10 integer:
Now, consider how the last digit of
changes with changes of the power of
:
Note that if
is odd:
If
is even:
Therefore, we have:
Note that for the odd case,
may simplify the process further, as given by Solution 1.
~Wilhelm Z
See Also
| 2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 9 |
Followed by Problem 11 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing