1980 AHSME Problems/Problem 28: Difference between revisions
| Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
Let <math>h(x)=x^2+x+1</math>. | |||
<math>x^2n = x^2n+x^{2n-1}+x^{2n-2} | Then we have | ||
<cmath>(x+1)^2n = (x^2+2x+1)^n = (h(x)+x)^n = g(x) \cdot h(x) + x^n,</cmath> | |||
where <math>g(x)</math> is <math>h^{n-1}(x) + nh^{n-2}(x) \cdot x + ... + x^{n-1}</math> (after expanding <math>(h(x)+x)^n</math> according to the Binomial Theorem. | |||
Notice that | |||
<math></math>x^2n = x^2n+x^{2n-1}+x^{2n-2}+...x | |||
-x^{2n-1}-x^{2n-2}-x^{2n-3} | -x^{2n-1}-x^{2n-2}-x^{2n-3} | ||
+...< | +...<math> | ||
<math>x^n = x^n+x^{n-1}+x^{n-2} | </math>x^n = x^n+x^{n-1}+x^{n-2} | ||
-x^{n-1}-x^{n-2}-x^{n-3} | -x^{n-1}-x^{n-2}-x^{n-3} | ||
+....< | +....<math> | ||
Therefore, the left term from <math>x^2n< | Therefore, the left term from </math>x^2n<math> is </math>x^{(2n-3u)}<math> | ||
the left term from <math>x^n< | the left term from </math>x^n<math> is </math>x^{(n-3v)}$, | ||
If divisible by h(x), we need 2n-3u=1 and n-3v=2 or | If divisible by h(x), we need 2n-3u=1 and n-3v=2 or | ||
2n-3u=2 and n-3v=1 | 2n-3u=2 and n-3v=1 | ||
The solution will be n=1 | The solution will be n=1 or 2 mod(3). Therefore n=21 is impossible | ||
~~Wei | ~~Wei | ||
Revision as of 18:38, 30 October 2021
Problem
The polynomial
is not divisible by
if
equals
Solution
Let
.
Then we have
where
is
(after expanding
according to the Binomial Theorem.
Notice that $$ (Error compiling LaTeX. Unknown error_msg)x^2n = x^2n+x^{2n-1}+x^{2n-2}+...x
-x^{2n-1}-x^{2n-2}-x^{2n-3}
+...$$ (Error compiling LaTeX. Unknown error_msg)x^n = x^n+x^{n-1}+x^{n-2}
-x^{n-1}-x^{n-2}-x^{n-3}
+....
x^2n
x^{(2n-3u)}
x^n
x^{(n-3v)}$,
If divisible by h(x), we need 2n-3u=1 and n-3v=2 or
2n-3u=2 and n-3v=1
The solution will be n=1 or 2 mod(3). Therefore n=21 is impossible
~~Wei
See also
| 1980 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 27 |
Followed by Problem 29 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing