2021 AIME I Problems/Problem 11: Difference between revisions
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) m →Solution 2 (Finding cos x): Minor corrections on the punctuations. |
||
| Line 82: | Line 82: | ||
==Solution 2 (Finding cos x)== | ==Solution 2 (Finding cos x)== | ||
The angle <math>\theta</math> between diagonals satisfies <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(s-b)(s-d)}{(s-a)(s-c)}}</cmath> (see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas). | The angle <math>\theta</math> between diagonals satisfies <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(s-b)(s-d)}{(s-a)(s-c)}}</cmath> (see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas). | ||
Thus, <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-4)(11-6)}{(11-5)(11-7)}}</cmath> or <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-5)(11-7)}{(11-4)(11-6)}}</cmath> | Thus, <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-4)(11-6)}{(11-5)(11-7)}}</cmath> or <cmath>\tan{\frac{\theta}{2}}=\sqrt{\frac{(11-5)(11-7)}{(11-4)(11-6)}}.</cmath> | ||
That is, <math>\tan^2{\frac{\theta}{2}}=\frac{1-\cos^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{24}{35}</math> or <math>\frac{35}{24}</math> | That is, <math>\tan^2{\frac{\theta}{2}}=\frac{1-\cos^2{\frac{\theta}{2}}}{\cos^2{\frac{\theta}{2}}}=\frac{24}{35}</math> or <math>\frac{35}{24}</math>. Thus, <math>\cos^2{\frac{\theta}{2}}=\frac{35}{59}</math> or <math>\frac{24}{59}</math>. So, | ||
Thus, <math>\cos^2{\frac{\theta}{2}}=\frac{35}{59}</math> or <math>\frac{24}{59}</math> | <cmath>\cos{\theta}=2\cos^2{\frac{\theta}{2}}-1=\frac{\pm11}{59}.</cmath> | ||
<cmath>\cos{\theta}=2\cos^2{\frac{\theta}{2}}-1=\frac{\pm11}{59}</cmath> | In this context, <math>\cos{\theta}>0</math>. Thus, <math>\cos{\theta}=\frac{11}{59}</math>. The perimeter of <math>A_1B_1C_1D_1</math> is | ||
In this context, <math>\cos{\theta}>0</math>. Thus, <math>\cos{\theta}=\frac{11}{59}</math> | <cmath>22\cdot\cos{\theta}=22\cdot\frac{11}{59}=\frac{242}{59},</cmath> and the answer is <math>m+n=242+59=\boxed{301}</math>. | ||
<cmath> | |||
< | |||
~y.grace.yu | ~y.grace.yu | ||
Revision as of 04:26, 31 August 2021
Problem
Let
be a cyclic quadrilateral with
and
Let
and
be the feet of the perpendiculars from
and
respectively, to line
and let
and
be the feet of the perpendiculars from
and
respectively, to line
The perimeter of
is
where
and
are relatively prime positive integers. Find
Diagram
~MRENTHUSIASM (by Geometry Expressions)
Solution 1 (Cyclic Quadrilaterals, Similar Triangles, and Trigonometry)
This solution refers to the Diagram section.
By the Converse of the Inscribed Angle Theorem, if distinct points
and
lie on the same side of
(but not on
itself) for which
then
and
are cyclic. From the Converse of the Inscribed Angle Theorem, quadrilaterals
and
are all cyclic.
Suppose
and
intersect at
and let
It follows that
and
We obtain the following diagram:
In every cyclic quadrilateral, each pair of opposite angles is supplementary. So, we have
(both supplementary to
) and
(both supplementary to
), from which
by AA, with the ratio of similitude
Similarly, we have
(both supplementary to
) and
(both supplementary to
), from which
by AA, with the ratio of similitude
We apply the Transitive Property to
and
- We get
so
by SAS, with the ratio of similitude ![\[\frac{B_1C_1}{BC}=\frac{B_1E}{BE}=\frac{C_1E}{CE}=\cos\theta. \hspace{14.75mm}(3)\]](//latex.artofproblemsolving.com/3/2/1/32130f85d69205e70793791c48e5faefed46e1fd.png)
- We get
so
by SAS, with the ratio of similitude ![\[\frac{D_1A_1}{DA}=\frac{D_1E}{DE}=\frac{A_1E}{AE}=\cos\theta. \hspace{14mm}(4)\]](//latex.artofproblemsolving.com/1/1/5/115bc444769d7d350cdfbdf6c13c34ddfd82fa06.png)
From
and
the perimeter of
is
Two solutions follow from here:
Solution 1.1 (Law of Cosines)
Note that
holds for all
We apply the Law of Cosines to
and
respectively:
We subtract
from
Finally, substituting this result into
gives
from which the answer is
~MRENTHUSIASM (inspired by Math Jams's 2021 AIME I Discussion)
Solution 1.2 (Area Formulas)
Let the brackets denote areas.
We find
in two different ways:
- Note that
holds for all
By area addition, we get
![\begin{align*} [ABCD]&=[ABE]+[BCE]+[CDE]+[DAE] \\ &=\frac12\cdot AE\cdot BE\cdot\sin\angle AEB+\frac12\cdot BE\cdot CE\cdot\sin\angle BEC+\frac12\cdot CE\cdot DE\cdot\sin\angle CED+\frac12\cdot DE\cdot AE\cdot\sin\angle DEA \\ &=\frac12\cdot AE\cdot BE\cdot\sin\theta+\frac12\cdot BE\cdot CE\cdot\sin\theta+\frac12\cdot CE\cdot DE\cdot\sin\theta+\frac12\cdot DE\cdot AE\cdot\sin\theta \\ &=\frac12\cdot\sin\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ }) \\ &=\frac12\cdot\sin\theta\cdot59. \end{align*}](//latex.artofproblemsolving.com/7/0/1/70179c9e0e55870390f958d93238725d162e28c2.png)
- By Brahmagupta's Formula, we get
where
is the semiperimeter of 
Equating the expressions for
we have
so
Since
we have
It follows that
Finally, substituting this result into
gives
from which the answer is
~MRENTHUSIASM (credit given to Leonard my dude)
Remark (Ptolemy's Theorem)
In
we have
~MRENTHUSIASM
Solution 2 (Finding cos x)
The angle
between diagonals satisfies
(see https://en.wikipedia.org/wiki/Cyclic_quadrilateral#Angle_formulas).
Thus,
or
That is,
or
. Thus,
or
. So,
In this context,
. Thus,
. The perimeter of
is
and the answer is
.
~y.grace.yu
Solution 3 (Pythagorean Theorem)
We assume that the two quadrilateral mentioned in the problem are similar (due to both of them being cyclic). Note that by Ptolemy’s, one of the diagonals has length
[I don't believe this is correct... are the two diagonals of
necessarily congruent? -peace09] WLOG we focus on diagonal
To find the diagonal of the inner quadrilateral, we drop the altitude from
and
and calculate the length of
Let
be
(Thus
By Pythagorean theorem, we have
Now let
be
(thus making
). Similarly, we have
We see that
, the scaled down diagonal is just
which is
times our original diagonal
implying a scale factor of
Thus, due to perimeters scaling linearly, the perimeter of the new quadrilateral is simply
making our answer
~fidgetboss_4000
See Also
| 2021 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 10 |
Followed by Problem 12 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing
![\begin{align*} [ABCD]&=[ABE]+[BCE]+[CDE]+[DAE] \\ &=\frac12\cdot AE\cdot BE\cdot\sin\angle AEB+\frac12\cdot BE\cdot CE\cdot\sin\angle BEC+\frac12\cdot CE\cdot DE\cdot\sin\angle CED+\frac12\cdot DE\cdot AE\cdot\sin\angle DEA \\ &=\frac12\cdot AE\cdot BE\cdot\sin\theta+\frac12\cdot BE\cdot CE\cdot\sin\theta+\frac12\cdot CE\cdot DE\cdot\sin\theta+\frac12\cdot DE\cdot AE\cdot\sin\theta \\ &=\frac12\cdot\sin\theta\cdot(\phantom{ }\underbrace{AE\cdot BE+BE\cdot CE+CE\cdot DE+DE\cdot AE}_{\text{Use the result from }\textbf{Remark}\text{.}}\phantom{ }) \\ &=\frac12\cdot\sin\theta\cdot59. \end{align*}](http://latex.artofproblemsolving.com/7/0/1/70179c9e0e55870390f958d93238725d162e28c2.png)