1998 AHSME Problems/Problem 28: Difference between revisions
| Line 4: | Line 4: | ||
<math> \mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26</math> | <math> \mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26</math> | ||
== Solution == | == Solution 1== | ||
Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and | Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and | ||
| Line 18: | Line 18: | ||
and <math>\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}</math>. (This also may have been done on a calculator by finding <math>\theta</math> directly) | and <math>\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}</math>. (This also may have been done on a calculator by finding <math>\theta</math> directly) | ||
== Solution 2 == | == Solution 2 == | ||
By the application of ratio lemma for <math>\frac{CD}{BD}</math>, we get <math>\frac{CD}{BD} = 2\cos{3A}\cos{A}</math>, where we let <math>A = \angle{DAB}</math>. We already know <math>\cos{2A}</math> hence the rest is easy | By the application of ratio lemma for <math>\frac{CD}{BD}</math>, we get <math>\frac{CD}{BD} = 2\cos{3A}\cos{A}</math>, where we let <math>A = \angle{DAB}</math>. We already know <math>\cos{2A}</math> hence the rest is easy | ||
Revision as of 20:46, 12 July 2021
Problem
In triangle
, angle
is a right angle and
. Point
is located on
so that angle
is twice angle
. If
, then
, where
and
are relatively prime positive integers. Find
.
Solution 1
Let
, so
and
. Then, it is given that
and
Now, through the use of trigonometric identities,
. Solving yields that
. Using the tangent addition identity, we find that
, and
and
. (This also may have been done on a calculator by finding
directly)
Solution 2
By the application of ratio lemma for
, we get
, where we let
. We already know
hence the rest is easy
Solution 3
Let
and
. By the Pythagorean Theorem,
. Let point
be on segment
such that
bisects
. Thus, angles
,
, and
are congruent. Applying the angle bisector theorem on
, we get that
and
. Pythagorean Theorem gives
.
Let
. By the Pythagorean Theorem,
. Applying the angle bisector theorem again on triangle
, we have
The right side simplifies to
. Cross multiplying, squaring, and simplifying, we get a quadratic:
Solving this quadratic and taking the positive root gives
Finally, taking the desired ratio and canceling the roots gives
. The answer is
.
See also
| 1998 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 27 |
Followed by Problem 29 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing