1996 USAMO Problems/Problem 5: Difference between revisions
| Line 52: | Line 52: | ||
Combining, we have <math>\frac{sin(80^\circ-x)}{sin(x)}=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}</math>. From here, we can use the given trigonometric identities at each step: | Combining, we have <math>\frac{sin(80^\circ-x)}{sin(x)}=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}</math>. From here, we can use the given trigonometric identities at each step: | ||
\begin{align*} | |||
\begin{ | \frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\ | ||
\frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\ | sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\ | ||
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\ | sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\ | ||
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\ | sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\ | ||
sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\ | sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\ | ||
sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\ | sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\ | ||
sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\ | |||
sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10] | sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10] | ||
sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\ | sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\ | ||
sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\ | sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\ | ||
sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\ | sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\ | ||
sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\ | sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\ | ||
\frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\ | \frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\ | ||
cos(140^\circ-x)&=cos(20^\circ+x) | cos(140^\circ-x)&=cos(20^\circ+x) | ||
\end{ | \end{align*} | ||
The only acute angle satisfying this equality is <math>x=60^\circ</math>. Therefore, <math>\angle ACB=80^\circ-x+30^\circ=50^\circ</math> and <math>\angle BAC=10^\circ+40^\circ=50^\circ</math>. Thus, <math>\triangle ABC</math> is isosceles. | The only acute angle satisfying this equality is <math>x=60^\circ</math>. Therefore, <math>\angle ACB=80^\circ-x+30^\circ=50^\circ</math> and <math>\angle BAC=10^\circ+40^\circ=50^\circ</math>. Thus, <math>\triangle ABC</math> is isosceles. | ||
Revision as of 15:34, 28 June 2021
Problem
Let
be a triangle, and
an interior point such that
,
,
and
. Prove that the triangle is isosceles.
Solution
Solution 1
Clearly,
and
. Now by the Law of Sines on triangles
and
, we have
and
Combining these equations gives us
Without loss of generality, let
and
. Then by the Law of Cosines, we have
Thus,
, our desired conclusion.
Solution 2
By the law of sines,
and
, so
.
Let
. Then,
. By the law of sines,
.
Combining, we have
. From here, we can use the given trigonometric identities at each step:
\begin{align*} \frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\ sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\ sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\ sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\ sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\ sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\ sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10] sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\ sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\ sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\ sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\ \frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\ cos(140^\circ-x)&=cos(20^\circ+x) \end{align*}
The only acute angle satisfying this equality is
. Therefore,
and
. Thus,
is isosceles.
Solution 3
If
then by Angle Sum in a Triangle we have
. By Trig Ceva we have
Because
is monotonic increasing over
, there is only one solution
to the equation. We claim it is
, which will make
isosceles with
.
Notice that
as desired.
See Also
| 1996 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination