2019 AIME I Problems/Problem 8: Difference between revisions
No edit summary |
No edit summary |
||
| Line 99: | Line 99: | ||
<math>m^6+n^6=\frac{11}{36}-\frac{1}{6}*\frac{7}{18}=\frac{13}{54}</math>, and the desired answer is <math>\boxed{067}</math> | <math>m^6+n^6=\frac{11}{36}-\frac{1}{6}*\frac{7}{18}=\frac{13}{54}</math>, and the desired answer is <math>\boxed{067}</math> | ||
==Solution 7 (Official MAA)== | |||
Let <math>c=\sin^2x\cdot\cos^2x,</math> and let <math>S(n)=\sin^{2n}x+\cos^{2n}x.</math> Then for <math>n\ge 1</math> | |||
<cmath>\begin{align*} | |||
S(n)&=(\sin^{2n}x+\cos^{2n}x)\cdot(\sin^2x+\cos^2x)\\ | |||
&=\sin^{2n+2}x+\cos^{2n+2}x+\sin^2x\cdot\cos^2x(\sin^{2n-2}x+\cos^{2n-2}x)\\ | |||
&=S(n+1)+cS(n-1). | |||
\end{align*}</cmath> | |||
Because <math>S(0)=2</math> and <math>S(1)=1,</math> it follows that <math>S(2)=1-2c, S(3)=1-3c,S(4)=2c^2-4c+1,</math> and <math>\tfrac{11}{36}=S(5)=5c^2-5c+1.</math> Hence <math>c=\tfrac16</math> or <math>\tfrac56,</math> and because <math>4c=\sin^2{2x},</math> the only possible value of <math>c</math> is <math>\tfrac16.</math> Therefore <cmath>S(6)=S(5)-cS(4)=\frac{11}{36}-\frac16\left(2\left(\frac16\right)^2-4\left(\frac16\right)+1\right)=\frac{13}{54}.</cmath> The requested sum is <math>13+54=67.</math> | |||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=I|num-b=7|num-a=9}} | {{AIME box|year=2019|n=I|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 15:16, 25 February 2021
Problem
Let
be a real number such that
. Then
where
and
are relatively prime positive integers. Find
.
Solution 1
We can substitute
. Since we know that
, we can do some simplification.
This yields
. From this, we can substitute again to get some cancellation through binomials. If we let
, we can simplify the equation to
. After using binomial theorem, this simplifies to
. If we use the quadratic formula, we obtain the that
, so
. By plugging z into
(which is equal to
), we can either use binomial theorem or sum of cubes to simplify, and we end up with
. Therefore, the answer is
.
-eric2020, inspired by Tommy2002
Solution 2
First, for simplicity, let
and
. Note that
. We then bash the rest of the problem out. Take the tenth power of this expression and get
. Note that we also have
. So, it suffices to compute
. Let
. We have from cubing
that
or
. Next, using
, we get
or
. Solving gives
or
. Clearly
is extraneous, so
. Now note that
, and
. Thus we finally get
, giving
.
- Emathmaster
Solution 3 (Newton Sums)
Newton sums is basically constructing the powers of the roots of the polynomials instead of deconstructing them which was done in Solution
. Let
and
be the roots of some polynomial
. Then, by Vieta,
for some
.
Let
. We want to find
. Clearly
and
. Newton sums tells us that
where
for our polynomial
.
Bashing, we have
Thus
. Clearly,
so
.
Note
. Solving for
, we get
. Finally,
.
Solution 4
Factor the first equation.
First of all,
because
We group the first, third, and fifth term and second and fourth term. The first group:
The second group:
Add the two together to make
Because this equals
, we have
Let
so we get
Solving the quadratic gives us
Because
, we finally get
.
Now from the second equation,
Plug in
to get
which yields the answer
~ZericHang
Solution 5
Define the recursion
We know that the characteristic equation of
must have 2 roots, so we can recursively define
as
.
is simply the sum of the roots of the characteristic equation, which is
.
is the product of the roots, which is
. This value is not trivial and we have to solve for it.
We know that
,
,
.
Solving the rest of the recursion gives
Solving for
in the expression for
gives us
, so
. Since
, we know that the minimum value it can attain is
by AM-GM, so
cannot be
.
Plugging in the value of
into the expression for
, we get
. Our final answer is then
-Natmath
Solution 6
Let
and
, then
and
Now factoring
as solution 4 yields
.
Since
,
.
Notice that
can be rewritten as
. Thus,
and
. As in solution 4, we get
and
Substitute
and
, then
, and the desired answer is
Solution 7 (Official MAA)
Let
and let
Then for
Because
and
it follows that
and
Hence
or
and because
the only possible value of
is
Therefore
The requested sum is
See Also
| 2019 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 7 |
Followed by Problem 9 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing