2021 AMC 10B Problems/Problem 7: Difference between revisions
| Line 4: | Line 4: | ||
<math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math> | <math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math> | ||
==Solution== | ==Solution== | ||
<asy> | |||
/* diagram made by samrocksnature */ | |||
pair A=(10,0); | pair A=(10,0); | ||
pair B=(-10,0); | pair B=(-10,0); | ||
| Line 14: | Line 15: | ||
dot((0,7)); | dot((0,7)); | ||
draw((0,7)--(0,0)); | draw((0,7)--(0,0)); | ||
label(" | label("$7$",(0,3.5),E); | ||
label(" | label("$l$",(-9,0),S); | ||
</asy> | |||
After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area. <math>49 \pi + (25-9) \pi=65 \pi \rightarrow \boxed{D}</math> | After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area. <math>49 \pi + (25-9) \pi=65 \pi \rightarrow \boxed{D}</math> ~ samrocksnature | ||
Revision as of 18:53, 11 February 2021
Problem
In a plane, four circles with radii
and
are tangent to line
at the same point
but they may be on either side of
. Region
consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region
?
Solution
After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area.
~ samrocksnature