2021 AMC 10B Problems/Problem 21: Difference between revisions
Created page with "hi im problem 211" |
mNo edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | |||
[url=https://aops.com/community/p20334805][size=150][b]Problem 21[/b][/size][/url] | |||
A square piece of paper has side length <math>1</math> and vertices <math>A,B,C,</math> and <math>D</math> in that order. As shown in the figure, the paper is folded so that vertex <math>C</math> meets edge <math>\overline{AD}</math> at point <math>C'</math>, and edge <math>\overline{AB}</math> at point <math>E</math>. Suppose that <math>C'D = \frac{1}{3}</math>. What is the perimeter of triangle <math>\bigtriangleup AEC' ?</math> | |||
<math>\textbf{(A)} ~2 \qquad\textbf{(B)} ~1+\frac{2}{3}\sqrt{3} \qquad\textbf{(C)} ~\sqrt{13}{6} \qquad\textbf{(D)} ~1 + \frac{3}{4}\sqrt{3} \qquad\textbf{(E)} ~\frac{7}{3}</math> | |||
<asy> | |||
pair A=(0,1); | |||
pair CC=(0.666666666666,1); | |||
pair D=(1,1); | |||
pair F=(1,0.62); | |||
pair C=(1,0); | |||
pair B=(0,0); | |||
pair G=(0,0.25); | |||
pair H=(-0.13,0.41); | |||
pair E=(0,0.5); | |||
dot(A^^CC^^D^^C^^B^^E); | |||
draw(E--A--D--F); | |||
draw(G--B--C--F, dashed); | |||
fill(E--CC--F--G--H--E--CC--cycle, gray); | |||
draw(E--CC--F--G--H--E--CC); | |||
label("A",A,NW); | |||
label("B",B,SW); | |||
label("C",C,SE); | |||
label("D",D,NE); | |||
label("E",E,NW); | |||
label("C",CC,N); | |||
</asy> | |||
==Solution== | |||
A | |||
Revision as of 18:28, 11 February 2021
Problem
[url=https://aops.com/community/p20334805][size=150][b]Problem 21[/b][/size][/url]
A square piece of paper has side length
and vertices
and
in that order. As shown in the figure, the paper is folded so that vertex
meets edge
at point
, and edge
at point
. Suppose that
. What is the perimeter of triangle
Solution
A