2004 AMC 10B Problems/Problem 24: Difference between revisions
No edit summary |
|||
| Line 6: | Line 6: | ||
== Solution 1== | == Solution 1== | ||
Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because | Set <math>\overline{BD}</math>'s length as <math>x</math>. <math>\overline{CD}</math>'s length must also be <math>x</math> since <math>\angle BAD</math> and <math>\angle DAC</math> intercept arcs of equal length (because <math>\angle BAD=\angle DAC</math>). Using [[Ptolemy's Theorem]], <math>7x+8x=9(AD)</math>. The ratio is <math>\frac{5}{3}\implies\boxed{\text{(B)}}</math> | ||
==Solution 2== | |||
<asy> | |||
import graph; | |||
import geometry; | |||
import markers; | |||
unitsize(0.5 cm); | |||
pair A, B, C, D, E, I; | |||
A = (11/3,8*sqrt(5)/3); | |||
B = (0,0); | |||
C = (9,0); | |||
I = incenter(A,B,C); | |||
D = intersectionpoint(I--(I + 2*(I - A)), circumcircle(A,B,C)); | |||
E = extension(A,D,B,C); | |||
draw(A--B--C--cycle); | |||
draw(circumcircle(A,B,C)); | |||
draw(D--A); | |||
draw(D--B); | |||
draw(D--C); | |||
label("$A$", A, N); | |||
label("$B$", B, SW); | |||
label("$C$", C, SE); | |||
label("$D$", D, S); | |||
label("$E$", E, NE); | |||
markangle(radius = 20,B, A, C, marker(markinterval(2,stickframe(1,2mm),true))); | |||
markangle(radius = 20,B, C, D, marker(markinterval(1,stickframe(1,2mm),true))); | |||
markangle(radius = 20,D, B, C, marker(markinterval(1,stickframe(1,2mm),true))); | |||
markangle(radius = 20,C, B, A, marker(markinterval(1,stickframe(2,2mm),true))); | |||
markangle(radius = 20,C, D, A, marker(markinterval(1,stickframe(2,2mm),true))); | |||
</asy> | |||
Let <math>E = \overline{BC}\cap \overline{AD}</math>. Observe that <math>\angle ABC \cong \angle ADC</math> because they subtend the same arc, <math>\overarc{AC}</math>. Furthermore, <math>\angle BAE \cong \angle EAC</math> because <math>\overline{AE}</math> is an angle bisector, so <math>\triangle ABE \sim \triangle ADC</math> by <math>\text{AA}</math> similarity. Then <math>\dfrac{AD}{AB} = \dfrac{CD}{BE}</math>. By the [[Angle Bisector Theorem]], <math>\dfrac{7}{BE} = \dfrac{8}{CE}</math>, so <math>\dfrac{7}{BE} = \dfrac{8}{9-BE}</math>. This in turn gives <math>BE = \frac{21}{5}</math>. Plugging this into the similarity proportion gives: <math>\dfrac{AD}{7} = \dfrac{CD}{\tfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>. | |||
== See Also == | == See Also == | ||
Revision as of 12:26, 7 January 2021
Problem
In triangle
we have
,
,
. Point
is on the circumscribed circle of the triangle so that
bisects angle
. What is the value of
?
Solution 1
Set
's length as
.
's length must also be
since
and
intercept arcs of equal length (because
). Using Ptolemy's Theorem,
. The ratio is
Solution 2
Let
. Observe that
because they subtend the same arc,
. Furthermore,
because
is an angle bisector, so
by
similarity. Then
. By the Angle Bisector Theorem,
, so
. This in turn gives
. Plugging this into the similarity proportion gives:
.
See Also
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 23 |
Followed by Problem 25 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination