Art of Problem Solving

2015 AMC 8 Problems/Problem 19: Difference between revisions

Borealbear (talk | contribs)
No edit summary
Borealbear (talk | contribs)
Line 45: Line 45:
==Solution 6 (Heron's Formula, Not Recommended)==
==Solution 6 (Heron's Formula, Not Recommended)==


We can find the lengths of the sides by using the Pythagorean theorem. Then, we apply Heron's Formula to find the area.  
We can find the lengths of the sides by using the Pythagorean theorem. Then, we apply [[Heron's Formula]] to find the area.  
<cmath> \sqrt{\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-2\sqrt{5}\right)}. </cmath>
<cmath> \sqrt{\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-2\sqrt{5}\right)}. </cmath>
This simplifies to
This simplifies to

Revision as of 17:42, 31 December 2020

A triangle with vertices as $A=(1,3)$, $B=(5,1)$, and $C=(4,4)$ is plotted on a $6\times5$ grid. What fraction of the grid is covered by the triangle?

$\textbf{(A) }\frac{1}{6} \qquad \textbf{(B) }\frac{1}{5} \qquad \textbf{(C) }\frac{1}{4} \qquad \textbf{(D) }\frac{1}{3} \qquad \textbf{(E) }\frac{1}{2}$

[asy]  draw((1,0)--(1,5),linewidth(.5)); draw((2,0)--(2,5),linewidth(.5)); draw((3,0)--(3,5),linewidth(.5)); draw((4,0)--(4,5),linewidth(.5)); draw((5,0)--(5,5),linewidth(.5)); draw((6,0)--(6,5),linewidth(.5)); draw((0,1)--(6,1),linewidth(.5)); draw((0,2)--(6,2),linewidth(.5)); draw((0,3)--(6,3),linewidth(.5)); draw((0,4)--(6,4),linewidth(.5)); draw((0,5)--(6,5),linewidth(.5));  draw((0,0)--(0,6),EndArrow); draw((0,0)--(7,0),EndArrow); draw((1,3)--(4,4)--(5,1)--cycle); label("$y$",(0,6),W); label("$x$",(7,0),S); label("$A$",(1,3),dir(210)); label("$B$",(5,1),SE); label("$C$",(4,4),dir(100)); [/asy]

Solution 1

The area of $\triangle ABC$ is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is $\sqrt{1^2+2^2}=\sqrt{5}$, and its base is $\sqrt{2^2+4^2}=\sqrt{20}$. We multiply these and divide by $2$ to find the of the triangle is $\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5$. Since the grid has an area of $30$, the fraction of the grid covered by the triangle is $\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}$.

Solution 2

Note angle $\angle ACB$ is right, thus the area is $\sqrt{1^2+3^2} \times \sqrt{1^2+3^2}\times \dfrac{1}{2}=10 \times \dfrac{1}{2}=5$ thus the fraction of the total is $\dfrac{5}{30}=\boxed{\textbf{(A)}~\dfrac{1}{6}}$

Solution 3

By the Shoelace theorem, the area of $\triangle ABC=|\dfrac{1}{2}(15+4+4-1-20-12)|=|\dfrac{1}{2}(-10)|=5$.

This means the fraction of the total area is $\dfrac{5}{30}=\boxed{\textbf{(A)}~\dfrac{1}{6}}$

Solution 4

The smallest rectangle that follows the grid lines and completely encloses $\triangle ABC$ has an area of $12$, where $\triangle ABC$ splits the rectangle into four triangles. The area of $\triangle ABC$ is therefore $12 - (\frac{4 \cdot 2}{2}+\frac{3 \cdot 1}{2}+\frac{3 \cdot 1}{2}) = 12 - (4 + \frac{3}{2} + \frac{3}{2}) = 12 - 7 = 5$. That means that $\triangle ABC$ takes up $\frac{5}{30} = \boxed{\textbf{(A)}~\frac{1}{6}}$ of the grid.

Solution 5

Using Pick's Theorem, the area of the triangle is $4 + \dfrac{4}{2} - 1=5$. Therefore, the triangle takes up $\dfrac{5}{30}=\boxed{\textbf{(A)}~\frac{1}{6}}$ of the grid.

Solution 6 (Heron's Formula, Not Recommended)

We can find the lengths of the sides by using the Pythagorean theorem. Then, we apply Heron's Formula to find the area. \[\sqrt{\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-2\sqrt{5}\right)}.\] This simplifies to \[\sqrt{\left(\sqrt{10}+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{10}\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{10}\right)\left(\sqrt{10}+\sqrt{5}-2\sqrt{5}\right)}.\] Again, we simplify to get \[\sqrt{\left(\sqrt{10}+\sqrt{5}\right)\left(\sqrt{5}\right)\left(\sqrt{5}\right)\left(\sqrt{10}-\sqrt{5}\right)}.\] The middle two terms inside the square root multiply to $5$, and the first and last terms inside the square root multiply to $\sqrt{10}^2-\sqrt{5}^2=10-5=5.$ This means that the area of the triangle is \[\sqrt{5\cdot 5}=5.\] The area of the grid is $6\cdot 5=30.$ Thus, the answer is $\frac{5}{30}=\boxed{\textbf{(A) }\frac{1}{6}}$. -BorealBear

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing