Art of Problem Solving

2004 AMC 12A Problems/Problem 6: Difference between revisions

Leonard my dude (talk | contribs)
No edit summary
Kingofspain1234 (talk | contribs)
 
Line 17: Line 17:


==Solution 2==
==Solution 2==
A quick check reveals the positive integers are in decreasing order. Then note <math>V = 2002^{2005}</math>. <math>\newline</math>
A quick check reveals the positive integers are in decreasing order. Then note <math>V = 2004^{2005}</math>. <math>\newline</math>
<math>U - V = 2004^{2005} = V</math>, and any of the other differences cannot be greater than or equal to <math>V</math>, hence choose <math>\boxed{A}</math> as the answer.
<math>U - V = 2004^{2005} = V</math>, and any of the other differences cannot be greater than or equal to <math>V</math>, hence choose <math>\boxed{A}</math> as the answer.
==See Also==
==See Also==
{{AMC12 box|year=2004|ab=A|num-b=5|num-a=7}}
{{AMC12 box|year=2004|ab=A|num-b=5|num-a=7}}
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 01:10, 30 December 2020

Problem

Let $U=2\cdot 2004^{2005}$, $V=2004^{2005}$, $W=2003\cdot 2004^{2004}$, $X=2\cdot 2004^{2004}$, $Y=2004^{2004}$ and $Z=2004^{2003}$. Which of the following is the largest?

$\mathrm {(A)} U-V \qquad \mathrm {(B)} V-W \qquad \mathrm {(C)} W-X \qquad \mathrm {(D)} X-Y \qquad \mathrm {(E)} Y-Z \qquad$

Solution

\begin{eqnarray*} U-V&=&2004*2004^{2004}\\ V-W&=&1*2004^{2004}\\ W-X&=&2001*2004^{2004}\\ X-Y&=&1*2004^{2004}\\ Y-Z&=&2003*2004^{2003} \end{eqnarray*}

After comparison, $U-V$ is the largest. $\mathrm {(A)}$


Solution 2

A quick check reveals the positive integers are in decreasing order. Then note $V = 2004^{2005}$. $\newline$ $U - V = 2004^{2005} = V$, and any of the other differences cannot be greater than or equal to $V$, hence choose $\boxed{A}$ as the answer.

See Also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing