2000 AMC 12 Problems/Problem 20: Difference between revisions
mNo edit summary |
|||
| Line 4: | Line 4: | ||
<cmath>x + \frac{1}{y} = 4,\qquad y + \frac{1}{z} = 1, \qquad \text{and} \qquad z + \frac{1}{x} = \frac{7}{3}</cmath> | <cmath>x + \frac{1}{y} = 4,\qquad y + \frac{1}{z} = 1, \qquad \text{and} \qquad z + \frac{1}{x} = \frac{7}{3}</cmath> | ||
Then what is the value of < | Then what is the value of <cmath>xyz</cmath> ? | ||
<math>\text {(A)}\ \frac{2}{3} \qquad \text {(B)}\ 1 \qquad \text {(C)}\ \frac{4}{3} \qquad \text {(D)}\ 2 \qquad \text {(E)}\ \frac{7}{3}</math> | <math>\text {(A)}\ \frac{2}{3} \qquad \text {(B)}\ 1 \qquad \text {(C)}\ \frac{4}{3} \qquad \text {(D)}\ 2 \qquad \text {(E)}\ \frac{7}{3}</math> | ||
Revision as of 19:24, 9 October 2020
Problem
If
and
are positive numbers satisfying
Then what is the value of
?
Solution
Solution 1
We multiply all given expressions to get:
Adding all the given expressions gives that
We subtract
from
to get that
. Hence, by inspection,
.
~AopsUser101
Solution 2
We have a system of three equations and three variables, so we can apply repeated substitution.
Multiplying out the denominator and simplification yields
, so
. Substituting leads to
, and the product of these three variables is
.
Also see
| 2000 AMC 12 (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing