2006 AIME II Problems/Problem 15: Difference between revisions
mNo edit summary |
No edit summary |
||
| Line 18: | Line 18: | ||
Note that <math>x, y</math> and <math>z</math> are each the sum of two positive [[square root]]s of real numbers, so <math>x, y, z \geq 0</math>. (Recall that, by [[AIME]] [[mathematical convention| convention]], all numbers (including square roots) are taken to be real unless otherwise indicated.) Also, <math>\sqrt{y^2-\frac{1}{16}} < \sqrt{y^2} = y</math>, so we have <math>x < y + z</math>, <math>y < z + x</math> and <math>z < x + y</math>. But these conditions are exactly those of the [[triangle inequality]], so there does exist such a triangle. | Note that <math>x, y</math> and <math>z</math> are each the sum of two positive [[square root]]s of real numbers, so <math>x, y, z \geq 0</math>. (Recall that, by [[AIME]] [[mathematical convention| convention]], all numbers (including square roots) are taken to be real unless otherwise indicated.) Also, <math>\sqrt{y^2-\frac{1}{16}} < \sqrt{y^2} = y</math>, so we have <math>x < y + z</math>, <math>y < z + x</math> and <math>z < x + y</math>. But these conditions are exactly those of the [[triangle inequality]], so there does exist such a triangle. | ||
==Video solution== | |||
https://www.youtube.com/watch?v=M6sC26dzb_I | |||
== See also == | == See also == | ||
Revision as of 17:03, 21 July 2020
Problem
Given that
and
are real numbers that satisfy:
and that
where
and
are positive integers and
is not divisible by the square of any prime, find
Solution
Let
be a triangle with sides of length
and
, and suppose this triangle is acute (so all altitudes are on the interior of the triangle).
Let the altitude to the side of length
be of length
, and similarly for
and
. Then we have by two applications of the Pythagorean Theorem that
. As a function of
, the RHS of this equation is strictly decreasing, so it takes each value in its range exactly once. Thus we must have that
and so
and similarly
and
.
Since the area of the triangle must be the same no matter how we measure,
and so
and
and
. The semiperimeter of the triangle is
so by Heron's formula we have
. Thus
and
and the answer is
.
Justification that there is an acute triangle with sides of length
and
:
Note that
and
are each the sum of two positive square roots of real numbers, so
. (Recall that, by AIME convention, all numbers (including square roots) are taken to be real unless otherwise indicated.) Also,
, so we have
,
and
. But these conditions are exactly those of the triangle inequality, so there does exist such a triangle.
Video solution
https://www.youtube.com/watch?v=M6sC26dzb_I
See also
| 2006 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing