1972 IMO Problems/Problem 5: Difference between revisions
mNo edit summary |
|||
| Line 7: | Line 7: | ||
Let <math>u>0</math> be the least upper bound for <math>|f(x)|</math> for all <math>x</math>. So, <math>|f(x)| \leq u</math> for all <math>x</math>. Then, for all <math>x,y</math>, | Let <math>u>0</math> be the least upper bound for <math>|f(x)|</math> for all <math>x</math>. So, <math>|f(x)| \leq u</math> for all <math>x</math>. Then, for all <math>x,y</math>, | ||
<math>2u | <math>2u \geq |f(x+y)+f(x-y)| = |2f(x)g(y)|=2|f(x)||g(y)|</math> | ||
Therefore, <math>u \geq |f(x)||g(y)|</math>, so <math>|f(x)| \leq u/|g(y)|</math>. | Therefore, <math>u \geq |f(x)||g(y)|</math>, so <math>|f(x)| \leq u/|g(y)|</math>. | ||
Revision as of 10:04, 11 June 2020
Let
and
be real-valued functions defined for all real values of
and
, and satisfying the equation
for all
. Prove that if
is not identically zero, and if
for all
, then
for all
.
Solution
Let
be the least upper bound for
for all
. So,
for all
. Then, for all
,
Therefore,
, so
.
Since
is the least upper bound for
,
. Therefore,
.
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln725.html