2013 AIME II Problems/Problem 10: Difference between revisions
Tag: Undo |
Tag: Undo |
||
| Line 1: | Line 1: | ||
==Problem 10== | ==Problem 10== | ||
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
==Solution 1== | |||
<asy> | |||
import math; | |||
import olympiad; | |||
import graph; | |||
pair A, B, K, L; | |||
B = (sqrt(13), 0); A=(4+sqrt(13), 0); | |||
dot(B); | |||
dot(A); | |||
draw(Circle((0,0), sqrt(13))); | |||
label("$O$", (0,0), S);label("$B$", B, SW);label("$A$", A, S); | |||
dot((0,0)); | |||
</asy> | |||
Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | |||
The equation for Circle O is <math>x^2+y^2=13</math>, and let the slope of the line<math>AKL</math> be <math>k</math>, then the equation for line<math>AKL</math> is <math>y=k(x-4-\sqrt{13})</math>. | |||
Then we get <math>(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0</math>. According to [[Vieta's Formulas]], we get | |||
<math>x_1+x_2=\frac{2k^2(4+\sqrt{13})}{k^2+1}</math>, and <math>x_1x_2=\frac{(4+\sqrt{13})^2\cdot k^2-13}{k^2+1}</math> | |||
So, <math>LK=\sqrt{1+k^2}\cdot \sqrt{(x_1+x_2)^2-4x_1x_2}</math> | |||
Also, the distance between <math>B</math> and <math>LK</math> is <math>\frac{k\times \sqrt{13}-(4+\sqrt{13})\cdot k}{\sqrt{1+k^2}}=\frac{-4k}{\sqrt{1+k^2}}</math> | |||
So the area <math>S=0.5ah=\frac{-4k\sqrt{(16-8\sqrt{13})k^2-13}}{k^2+1}</math> | |||
Then the maximum value of <math>S</math> is <math>\frac{104-26\sqrt{13}}{3}</math> | |||
So the answer is <math>104+26+13+3=\boxed{146}</math>. | |||
==Solution 2== | ==Solution 2== | ||
Revision as of 20:01, 4 June 2020
Problem 10
Given a circle of radius
, let
be a point at a distance
from the center
of the circle. Let
be the point on the circle nearest to point
. A line passing through the point
intersects the circle at points
and
. The maximum possible area for
can be written in the form
, where
,
,
, and
are positive integers,
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Now we put the figure in the Cartesian plane, let the center of the circle
, then
, and
The equation for Circle O is
, and let the slope of the line
be
, then the equation for line
is
.
Then we get
. According to Vieta's Formulas, we get
, and
So,
Also, the distance between
and
is
So the area
Then the maximum value of
is
So the answer is
.
Solution 2
Draw
perpendicular to
at
. Draw
perpendicular to
at
.
Therefore, to maximize area of
, we need to maximize area of
.
So when area of
is maximized,
.
Eventually, we get
So the answer is
.
See Also
http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/
| 2013 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing