2009 AMC 12A Problems/Problem 21: Difference between revisions
| Line 8: | Line 8: | ||
<math>\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12</math> | <math>\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12</math> | ||
== Solution== | |||
From the three zeroes, we have <math>p(x) = (x - (2009 + 9002\pi i))(x - 2009)(x - 9002)</math>. | From the three zeroes, we have <math>p(x) = (x - (2009 + 9002\pi i))(x - 2009)(x - 9002)</math>. | ||
Revision as of 15:18, 29 May 2020
Problem
Let
, where
,
, and
are complex numbers. Suppose that
What is the number of nonreal zeros of
?
Solution
From the three zeroes, we have
.
Then
.
Let's do each factor case by case:
: Clearly, all the fourth roots are going to be complex.
: The real roots are
, and there are two complex roots.
: The real roots are
, and there are two complex roots.
So the answer is
.
See also
| 2009 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 20 |
Followed by Problem 22 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination