Angle Bisector Theorem: Difference between revisions
| Line 18: | Line 18: | ||
I noticed that these are the numerators of <math>(1)</math> and <math>(2)</math> respectively. Since <math>\angle BAD</math> and <math>\angle DAC</math> are equal, then you get the equation for the bisector angle theorem. ~ SilverLightning59 | I noticed that these are the numerators of <math>(1)</math> and <math>(2)</math> respectively. Since <math>\angle BAD</math> and <math>\angle DAC</math> are equal, then you get the equation for the bisector angle theorem. ~ SilverLightning59 | ||
== Examples == | == Examples & Problems == | ||
# Let ABC be a triangle with angle bisector AD with D on line segment BC. If <math> BD = 2, CD = 5,</math> and <math> AB + AC = 10 </math>, find AB and AC.<br> '''''Solution:''''' By the angle bisector theorem, <math> \frac{AB}2 = \frac{AC}5</math> or <math> AB = \frac 25 AC </math>. Plugging this into <math> AB + AC = 10 </math> and solving for AC gives <math> AC = \frac{50}7</math>. We can plug this back in to find <math> AB = \frac{20}7 </math>. | # Let ABC be a triangle with angle bisector AD with D on line segment BC. If <math> BD = 2, CD = 5,</math> and <math> AB + AC = 10 </math>, find AB and AC.<br> '''''Solution:''''' By the angle bisector theorem, <math> \frac{AB}2 = \frac{AC}5</math> or <math> AB = \frac 25 AC </math>. Plugging this into <math> AB + AC = 10 </math> and solving for AC gives <math> AC = \frac{50}7</math>. We can plug this back in to find <math> AB = \frac{20}7 </math>. | ||
Revision as of 03:22, 26 April 2020
| This is an AoPSWiki Word of the Week for June 6-12 |
Introduction
The Angle Bisector Theorem states that given triangle
and angle bisector AD, where D is on side BC, then
. It follows that
. Likewise, the converse of this theorem holds as well.
Further by combining with Stewart's Theorem it can be shown that
Proof
By
on
and
,
...
and
...
Well, we also know that
and
add to
. I think that means that we can use
here. Doing so, we see that
I noticed that these are the numerators of
and
respectively. Since
and
are equal, then you get the equation for the bisector angle theorem. ~ SilverLightning59
Examples & Problems
- Let ABC be a triangle with angle bisector AD with D on line segment BC. If
and
, find AB and AC.
Solution: By the angle bisector theorem,
or
. Plugging this into
and solving for AC gives
. We can plug this back in to find
. - In triangle ABC, let P be a point on BC and let
. Find the value of
.
Solution: First, we notice that
. Thus, AP is the angle bisector of angle A, making our answer 0. - Part (b), 1959 IMO Problems/Problem 5.