2018 AIME II Problems/Problem 4: Difference between revisions
m I wrote this solution, not you. |
|||
| Line 13: | Line 13: | ||
In order to find the area of <math>CORNELIA</math>, we need to find 4 times the area of <math>\bigtriangleup</math><math>ACY</math> and 2 times the area of <math>\bigtriangleup</math><math>YZW</math>. | In order to find the area of <math>CORNELIA</math>, we need to find 4 times the area of <math>\bigtriangleup</math><math>ACY</math> and 2 times the area of <math>\bigtriangleup</math><math>YZW</math>. | ||
Using similar triangles <math>\bigtriangleup</math><math>ARW</math> and <math>\bigtriangleup</math><math>YZW</math>, <math>YZ</math> <math>=</math> <math>\frac{1}{3}</math>. Therefore, the area of <math>\bigtriangleup</math><math>YZW</math> is <math>\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{2}</math> <math>=</math> <math>\frac{1}{12}</math> | Using similar triangles <math>\bigtriangleup</math><math>ARW</math> and <math>\bigtriangleup</math><math>YZW</math>(We look at their heights), <math>YZ</math> <math>=</math> <math>\frac{1}{3}</math>. Therefore, the area of <math>\bigtriangleup</math><math>YZW</math> is <math>\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{2}</math> <math>=</math> <math>\frac{1}{12}</math> | ||
Since <math>YZ</math> <math>=</math> <math>\frac{1}{3}</math> and <math>XY = ZQ</math>, <math>XY</math> <math>=</math> <math>\frac{1}{3}</math> and <math>CY</math> <math>=</math> <math>\frac{4}{3}</math>. | Since <math>YZ</math> <math>=</math> <math>\frac{1}{3}</math> and <math>XY = ZQ</math>, <math>XY</math> <math>=</math> <math>\frac{1}{3}</math> and <math>CY</math> <math>=</math> <math>\frac{4}{3}</math>. | ||
Revision as of 22:29, 29 February 2020
Problem
In equiangular octagon
,
and
. The self-intersecting octagon
encloses six non-overlapping triangular regions. Let
be the area enclosed by
, that is, the total area of the six triangular regions. Then
, where
and
are relatively prime positive integers. Find
.
Solution
We can draw
and introduce some points.
Error creating thumbnail: File missing
The diagram is essentially a 3x3 grid where each of the 9 squares making up the grid have a side length of 1.
In order to find the area of
, we need to find 4 times the area of ![]()
and 2 times the area of ![]()
.
Using similar triangles ![]()
and ![]()
(We look at their heights),
. Therefore, the area of ![]()
is
Since
and
,
and
.
Therefore, the area of ![]()
is
Our final answer is
See Also
| 2018 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing