1991 AIME Problems/Problem 1: Difference between revisions
Olympushero (talk | contribs) |
Olympushero (talk | contribs) |
||
| Line 26: | Line 26: | ||
~ Nafer | ~ Nafer | ||
=== Solution 4 === | === Solution 4 === | ||
From the first equation, we know <math>x+y=71-xy</math>. We factor the second equation as xy(71-xy)=880<math>. Let < | From the first equation, we know <math>x+y=71-xy</math>. We factor the second equation as <math>xy(71-xy)=880</math>. Let <math>a=xy</math> and rearranging we get a^2-71a+880=(a-16)(a-55)=0. We have two cases: (1) x+y=16 and xy=55 OR (2) x+y=55 and xy=16. We find the former is true for (x,y) = (5,11). x^2+y^2=121+25=146. (sorry, I don't know how to use Latex). | ||
== See also == | == See also == | ||
Revision as of 16:44, 23 February 2020
Problem
Find
if
and
are positive integers such that
Solution
Solution 1
Define
and
. Then
and
. Solving these two equations yields a quadratic:
, which factors to
. Either
and
or
and
. For the first case, it is easy to see that
can be
(or vice versa). In the second case, since all factors of
must be
, no two factors of
can sum greater than
, and so there are no integral solutions for
. The solution is
.
Solution 2
Since
, this can be factored to
. As
and
are integers, the possible sets for
(ignoring cases where
since it is symmetrical) are
. The second equation factors to
. The only set with a factor of
is
, and checking shows that it is our solution.
Solution 3
Let
,
then we get the equations
After finding the prime factorization of
, it's easy to obtain the solution
. Thus
Note that if
, the answer would exceed
which is invalid for an AIME answer.
~ Nafer
Solution 4
From the first equation, we know
. We factor the second equation as
. Let
and rearranging we get a^2-71a+880=(a-16)(a-55)=0. We have two cases: (1) x+y=16 and xy=55 OR (2) x+y=55 and xy=16. We find the former is true for (x,y) = (5,11). x^2+y^2=121+25=146. (sorry, I don't know how to use Latex).
See also
| 1991 AIME (Problems • Answer Key • Resources) | ||
| Preceded by First question |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination