1978 AHSME Problems/Problem 6: Difference between revisions
Created blank page |
No edit summary |
||
| Line 1: | Line 1: | ||
== Problem 6 == | |||
The number of distinct pairs <math>(x,y)</math> of real numbers satisfying both of the following equations: | |||
<cmath>x=x^2+y^2 \ \ y=2xy</cmath> | |||
is | |||
<math>\textbf{(A) }0\qquad | |||
\textbf{(B) }1\qquad | |||
\textbf{(C) }2\qquad | |||
\textbf{(D) }3\qquad | |||
\textbf{(E) }4 </math> | |||
If <math>x=x^2+y^2</math> and <math>y=2xy</math>, then we can break this into two cases. | |||
Case 1: <math>y = 0</math> | |||
If <math>y = 0</math>, then <math>x = x^2</math> and <math>0 = 0</math> | |||
Therefore, <math>x = 0</math> or <math>x = 1</math> | |||
This yields 2 solutions | |||
Case 2: <math>x = \frac{1}{2}</math> | |||
If <math>x = \frac{1}{2}</math>, this means that <math>y = y</math>, and <math>\frac{1}{2} = \frac{1}{4} + y^2</math>. | |||
Because y can be negative or positive, this yields <math>y = \frac{1}{2}</math> or <math>y = -\frac{1}{2}</math> | |||
This yields another 2 solutions. | |||
<math>2+2 = \boxed{\textbf{(E) 4}}</math> | |||
Revision as of 20:35, 21 January 2020
Problem 6
The number of distinct pairs
of real numbers satisfying both of the following equations:
is
If
and
, then we can break this into two cases.
Case 1:
If
, then
and
Therefore,
or
This yields 2 solutions
Case 2:
If
, this means that
, and
.
Because y can be negative or positive, this yields
or
This yields another 2 solutions.