Art of Problem Solving

1978 AHSME Problems/Problem 6: Difference between revisions

As3141 (talk | contribs)
Created blank page
 
Awin (talk | contribs)
No edit summary
Line 1: Line 1:
== Problem 6 ==


The number of distinct pairs <math>(x,y)</math> of real numbers satisfying both of the following equations:
<cmath>x=x^2+y^2 \  \ y=2xy</cmath>
is
<math>\textbf{(A) }0\qquad
\textbf{(B) }1\qquad
\textbf{(C) }2\qquad
\textbf{(D) }3\qquad
\textbf{(E) }4    </math>
If <math>x=x^2+y^2</math> and <math>y=2xy</math>, then we can break this into two cases.
Case 1: <math>y = 0</math>
If <math>y = 0</math>, then <math>x = x^2</math> and <math>0 = 0</math>
Therefore, <math>x = 0</math> or <math>x = 1</math>
This yields 2 solutions
Case 2: <math>x = \frac{1}{2}</math>
If <math>x = \frac{1}{2}</math>, this means that <math>y = y</math>, and <math>\frac{1}{2} = \frac{1}{4} + y^2</math>.
Because y can be negative or positive, this yields <math>y = \frac{1}{2}</math> or <math>y = -\frac{1}{2}</math>
This yields another 2 solutions.
<math>2+2 = \boxed{\textbf{(E) 4}}</math>

Revision as of 20:35, 21 January 2020

Problem 6

The number of distinct pairs $(x,y)$ of real numbers satisfying both of the following equations:

\[x=x^2+y^2 \   \ y=2xy\] is

$\textbf{(A) }0\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }3\qquad  \textbf{(E) }4$

If $x=x^2+y^2$ and $y=2xy$, then we can break this into two cases.

Case 1: $y = 0$

If $y = 0$, then $x = x^2$ and $0 = 0$

Therefore, $x = 0$ or $x = 1$

This yields 2 solutions

Case 2: $x = \frac{1}{2}$

If $x = \frac{1}{2}$, this means that $y = y$, and $\frac{1}{2} = \frac{1}{4} + y^2$.

Because y can be negative or positive, this yields $y = \frac{1}{2}$ or $y = -\frac{1}{2}$

This yields another 2 solutions.

$2+2 = \boxed{\textbf{(E) 4}}$