Art of Problem Solving

1978 AHSME Problems/Problem 1: Difference between revisions

Awin (talk | contribs)
Created page with "== Problem 1 == If <math>1-\frac{4}{x}+\frac{4}{x^2}=0</math>, then <math>\frac{2}{x}</math> equals <math>\textbf{(A) }-1\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \te..."
 
Awin (talk | contribs)
Line 8: Line 8:
\textbf{(D) }-1\text{ or }2\qquad  
\textbf{(D) }-1\text{ or }2\qquad  
\textbf{(E) }-1\text{ or }-2    </math>
\textbf{(E) }-1\text{ or }-2    </math>
[[1978 AHSME Problems/Problem 1|Solution]]


==Solution 1==
==Solution 1==
By guessing and checking, 2 works.  
By guessing and checking, 2 works.  
<math>\frac{2}{x} = </math>\boxed{\textbf{(D)  }1}
<math>\frac{2}{x} = </math>\boxed{\textbf{(D)  }1}

Revision as of 14:24, 20 January 2020

Problem 1

If $1-\frac{4}{x}+\frac{4}{x^2}=0$, then $\frac{2}{x}$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }-1\text{ or }2\qquad  \textbf{(E) }-1\text{ or }-2$

Solution 1

By guessing and checking, 2 works. $\frac{2}{x} =$\boxed{\textbf{(D) }1}